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Derivatives of inverse trig functions:

d

dx
[arcsin(u)] =

u′
√

1− u2

d

dx
[arccsc(u)] = − u′

|u|
√
u2 − 1

d

dx
[arccos(u)] = − u′

√
1− u2

d

dx
[arcsec(u)] =

u′
√
u2 − 1

d

dx
[arctan(u)] =

u′

1 + u2

d

dx
[arccot(u)] = − u′

1 + u2

Here, u is representative of a function as it makes it look a little cleaner and makes the
chain rule look a little more obvious. I believe your book gives the formulae in terms of
x, so u = x and u′ = 1.
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Example (§3.9, #5). Let f(x) = (x− 1) arcsin(x) on the interval [−1, 1].

a. Graph f with a graphing utility.

b. Compute and graph f ′.

c. Verify that the zeros of f ′ correspond to points at which f has a horizontal
tangent line.

Solution.

a. & b. Via the product rule, we get that f ′(x) = arcsin(x)+
x− 1√
1− x2

, the plots of which

can be found below. In Maple, we would plot it with the following command:

plots[multiple](plot, [(x-1)*arcsin(x), x=-1..1],

[arcsin(x)+(x-1)/(sqrt(1-x^2)), x=-1..1] );

resulting in a picture like the following:
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c. We notice that our derivative crosses the x-axis at x ≈ 0.5, which is right about
the point in our original function where the slope is zero.
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Finally, applications of calculus.

Since the derivative tells you the slope of a function at any particular point, it makes
sense that we apply it to rates of change. One of the common examples is as follows. Let
f(t) (also commonly written as r(t)) represent the position of an object as a function of
time. We then have the following relationships:

position function: f(t)

velocity function:
d

dt
[f(t)] = f ′(t)

acceleration function:
d2

dt2
[f(t)] = f ′′(t)

Although none of the examples below will explicitly calculate these values, it’s useful to
know them as they pop up EVERYWHERE.



6

Example (§3.5, #1). The following figure shows the position function s = f(t) of an
airliner on an out-and-back trip from from Seattle to Minneapolis, where s = f(t) is the
number of ground miles from Seattle t hours after take-off at 6:00 AM. The plane returns
to Seattle 8.5 hours later at 2:30 PM.

a. Calculate the average velocity of the airliner during the first 1.5 hours of the
trip (0 ≤ t ≤ 1.5).

b. Calculate the average velocity of the airliner between 1:30 PM and 2:30 PM
(7.5 ≤ t ≤ 8.5).

c. At what time(s) is the velocity 0? Give a plausible explanation.

d. Determine the velocity of the airliner at noon (t = 6) and explain why the
velocity is negative.

Solution

a. The average velocity is

vavg =
f(t1)− f(t0)

t1 − t0
=

600 mi− 0 mi

1.5 h− 0 h
= 450 mi/h.
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b. The average velocity is

vavg =
f(t1)− f(t0)

t1 − t0
=

0 mi− 350 mi

8.5 h− 7.5 h
= −350 mi/h.

c. The velocity (slope) is 0 when 3 ≤ t ≤ 5. This would represent the time that
the plane landed in Minneapolis and partook in all of its plane-ly business before
taking off again.

d. The tangent line at t = 6 looks to be about the same as the portion of the
graph where 6 ≤ t ≤ 7, so f ′(6) ≈ −600 mi/h. The reason it is negative is because
it represents the plane getting closer to Seattle.



8

Example (§3.5, #3). The graph shows the position s = f(t) of a car t hours after 5:00
PM relative to its starting point s = 0, where s is measured in miles.

a. Describe the velocity of the car. Specifically, when is it speeding up and when
is it slowing down?

b. At approximately what time is the car traveling the fastest? The slowest?

c. What is the approximate maximum velocity of the car? The approximate
minimum velocity?

solution

a. The car is speeding up when our slope increases and slowing down when the
slope decreases. Looking at the graph, the car appears to speed up at 1.75 hours
and slows down at approximately 1.25 hours.

b. The maximum velocity corresponds to the steepest slope, which occurs in the
time interval [0.25, 0.5]. The minimum velocity corresponds to the least-steep slope,
which occurs in the time interval [1.25, 1.5].

c. From part b., we get that the maximum velocity is approximately
20mi− 0.75mi

0.5h− 0.25h
=
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77mi/h and the minimum velocity is approximately
41mi− 40mi

1.5h− 1.25h
= 4mi/h.
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Example (§3.10, #1). The volume of a cube decreases at a rate of 0.5 ft3/min. What
is the rate of change of the side length when the side lengths are 12 ft?

Solution

Recall that the volume of the cube is given by V = s3, where s is the length of the sides.
Ultimately, the volume and the side lengths are changing with respect to time, so we can
differentiate both sides with respect to time t and get

d

dt
[V ] =

d

dt
[s3]

= 3s2
ds

dt

In particular, we’re given that dV
dt

= −0.5 ft3/min when s = 12 ft, so we can plug them
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into our equation and find ds
dt

, the rate of change of the side lengths.

3s2
ds

dt
=

dV

dt
ds

dt
=

1

3s2
dV

dt

=
1

3(12 ft)2
· −1 ft3

2 min

= − 1

864
ft/min.
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Assignment

MAT270 Recitation Notebook
§3.5, Problems 2
§3.9, Problems 1,2
§3.10, Problems 1,5


