Recitation 06: Trig Limits and Derivatives

Joseph Wells
Arizona State University

May 3, 2014

This week, we covered a few more limits, derivatives of trig functions, and the powerful chain rule.

Theorem (3.11).

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1 \quad \lim _{x \rightarrow 0} \frac{\cos (x)-1}{x}=0
$$

Theorem (3.12).

$$
\frac{d}{d x}[\sin (x)]=\cos (x) \quad \frac{d}{d x}[\cos (x)]=-\sin (x)
$$

Theorem (3.13).

$$
\begin{aligned}
\frac{d}{d x}[\sin (x)] & =\cos (x) & \frac{d}{d x}[\csc (x)] & =-\csc (x) \cot (x) \\
\frac{d}{d x}[\cos (x)] & =-\sin (x) & \frac{d}{d x}[\sec (x)] & =\sec (x) \tan (x) \\
\frac{d}{d x}[\tan (x)] & =\sec ^{2}(x) & \frac{d}{d x}[\cot (x)] & =-\csc ^{2}(x)
\end{aligned}
$$

Theorem (3.14-Chain Rule). Suppose g is differentiable at x and $y=f(u)$ is differentiable at $u=g(x)$. The composite function $y=f(g(x))$ is differentiable at x, and its derivative can be expressed in two ways:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d u} \cdot \frac{d u}{d x} \\
\frac{d}{d x}[f(g(x))] & =f^{\prime}(g(x)) \cdot g^{\prime}(x)
\end{aligned}
$$

Theorem (3.15-Chain Rule (for Powers)). If g is differentiable for all x in the domain and n is an integer, then

$$
\frac{d}{d x}\left[(g(x))^{n}\right]=n(g(x))^{n-1} \cdot g^{\prime}(x) .
$$

Example (§3.4, \#3). Evaluate the following limits or state that they do not exist.

$$
\lim _{x \rightarrow 0} \frac{\sin (a x)}{b x}, \quad \text { where } a \text { and } b \text { are constants with } b \neq 0
$$

Solution.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (a x)}{b x}=\frac{1}{b}\left[\lim _{x \rightarrow 0} \frac{\sin (a x)}{x}\right] & =\frac{1}{b}\left[\lim _{x \rightarrow 0} \frac{a \sin (a x)}{a x}\right]=\frac{a}{b}\left[\lim _{x \rightarrow 0} \frac{\sin (a x)}{a x}\right] \\
& \text { substituting } t=a x \\
& =\frac{a}{b}\left[\lim _{t \rightarrow 0} \frac{\sin (t)}{t}\right] \\
& \text { and applying Theorem 3.11 } \\
& =\frac{a}{b} \cdot 1=\frac{a}{b}
\end{aligned}
$$

Example (§3.6 \#4). Suppose f is differentiable on $[-2,2]$ with $f^{\prime}(0)=3$ and $f^{\prime}(1)=5$.
Let $g(x)=f(\sin (x))$. Evaluate the following expressions.
a $g^{\prime}(0)$
b $g^{\prime}\left(\frac{\pi}{2}\right)$
c $g^{\prime}(\pi)$
Solution.
First thing's first - let's figure out the derivative of $g(x)$

$$
\frac{d}{d x} g(x)=\frac{d}{d x} f(\sin (x))=[\sin (x)]^{\prime} \cdot f^{\prime}(\sin (x))=\cos (x) \cdot f^{\prime}(\sin (x))
$$

a

$$
g^{\prime}(0)=\cos (0) f^{\prime}(\sin (0))=1 \cdot f^{\prime}(0)=3
$$

b

$$
g^{\prime}\left(\frac{\pi}{2}\right)=\cos \left(\frac{p i}{2}\right) \cdot f^{\prime}\left(\sin \left(\frac{p i}{2}\right)\right)=0 \cdot f^{\prime}(1)=0
$$

$$
g^{\prime}(\pi)=\cos (\pi) \cdot f^{\prime}(\sin (\pi))=-1 \cdot f^{\prime}(0)=-3
$$

Assignment

MAT270 Recitation Notebook
§3.4, Problems 1,2,4
§3.6, Problems 1,2,3

