Recitation 05: Derivatives

Joseph Wells
Arizona State University

May 3, 2014

Rules of Differentiation

Constant:

$$
\begin{gathered}
\frac{d}{d x}(c)=0 \\
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \\
\frac{d}{d x}[c f(x)]=c f^{\prime}(x) \\
\frac{d}{d x}\left(e^{x}\right)=e^{x} \\
\frac{d}{d x}\left(e^{k x}\right)=k e^{k x} \\
\frac{d}{d x}[f(x)+g(x)]=f^{\prime}(x)+g^{\prime}(x) \\
\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \\
\frac{d}{d x}\left[\frac{d}{d x}\right]=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}
\end{gathered}
$$

Power:
Constant Multiple:
Exponential:
Constant Exponential:
Sum:
Product:
Quotient:

The derivative of a function $f(x)$ is another function, $f^{\prime}(x)$, that represents the slope at every point in our original function $f(x)$. If we need to know the slope at a particular
point $x=a$, we simply compute the derivative and then plug in the x-value. This process would be denoted $f^{\prime}(a)$ or, somewhat less commonly, $\left.\frac{d}{d x} f(x)\right|_{x=a}$.

Example ($(3.2, \# 4)$. Let $F=f+g$ and $G=3 f-g$, where the graphs of f and g are shown in the figure (in the recitation notebook). Find the following derivatives.
a. $F^{\prime}(1)$
b. $\mathrm{G}^{\prime}(5)$

Solution.
a. Since $F=f+g$, then $F^{\prime}=f^{\prime}+g^{\prime}$. At $x=1$, the slope of f is -3 and the slope of g is 1 . Therefore

$$
F^{\prime}(1)=f^{\prime}(1)+g^{\prime}(1)=-3+1=-2
$$

b. Since $G=3 f-g$, then $G^{\prime}=3 f^{\prime}-g^{\prime}$. At $x=5$, the slope of f is 1 and the slope of g is -1 . Therefore

$$
G^{\prime}(5)=3 f^{\prime}(5)-g^{\prime}(5)=3(1)-(-1)=4
$$

Example (§3.3,\#4). Suppose the derivative of f exists, and assume that $f(2)=2$ and $f^{\prime}(2)=3$. Let $g(x)=x^{2} \cdot f(x)$ and $h(x)=\frac{f(x)}{x-3}$.
a. Find an equation of the line tangent to $y=g(x)$ at $x=2$.
b. Find an equation of the line tangent to $y=h(x)$ at $x=2$.

Solution.

a. We first start by finding the slope at $x=2$, given by $g^{\prime}(2)$. So first we differentiate $g(x)$

$$
g^{\prime}(x)=\left[x^{2}\right]^{\prime} f(x)+x^{2} f^{\prime}(x)=2 x f(x)+x^{2} f^{\prime}(x),
$$

and then we plug in $x=2$

$$
m=g^{\prime}(2)=2(2) f(2)+(2)^{2} f^{\prime}(2)=4(2)+4(3)=20
$$

Now that we have our slope, we can use our point-slope form to determine the equation of the tangent line passing through the point $(2, g(2))=(2,8)$. I'll call
this equation t :

$$
\begin{aligned}
t-8 & =20(x-2) \\
t-8 & =20 x-40 \\
t & =20 x-32 .
\end{aligned}
$$

b. We repeat the same process here for $h(x)$.

$$
h^{\prime}(x)=\frac{f(x)}{x-3}=\frac{f^{\prime}(x)(x-3)-f(x)[x-3]^{\prime}}{(x-3)^{2}}=\frac{f^{\prime}(x)(x-3)-f(x)}{(x-3)^{2}}
$$

so our slope at $x=2$ is

$$
m=h^{\prime}(2)=\frac{f^{\prime}(2)(2-3)-f(2)}{(2-3)^{2}}=\frac{3(-1)-2}{1}=-5 .
$$

The equation of our tangent line t going through the point $(2, h(2))=(2,-2)$ is thus

$$
\begin{aligned}
t-(-2) & =-5(x-2) \\
t+2 & =-5 x+10 \\
t & =-5 x+8 .
\end{aligned}
$$

Example ($\S 3.3, \# 5)$. Use the following table to find the given derivative.

x	1	2	3	4	5
$f(x)$	5	4	3	2	1
$f^{\prime}(x)$	3	5	2	1	4
$g(x)$	4	2	5	3	1
$g^{\prime}(x)$	2	4	3	1	2

$\left.\frac{d}{d x}[f(x) g(x)]\right|_{x=1}$
Solution.
We first find the derivative

$$
\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

and then we plug in $x=1$ and reference the table to plug in the values

$$
f^{\prime}(1) g(1)+f(1) g^{\prime}(1)=3(4)+5(2)=22 .
$$

Assignment

MAT270 Recitation Notebook

§3.2, Problems 1,2,3
§3.3, Problems 1,3

