Recitation 03: Limits

Joseph Wells
Arizona State University

May 3, 2014

Recall that removable discontinuities are those holes in the domain of the function that can be ignored when calculating the limit at that point.
For example, consider $f(x)=\frac{x^{2}+x-2}{x+1}$. The domain of $f(x)$ is $(-\infty, 1) \cup(1, \infty)$, but we can still calculate the limit at $x=1$:

$$
\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x+1}=\lim _{x \rightarrow 1} \frac{(x-1)(x+2)}{x-1}=\lim _{x \rightarrow 1} x+2=3 .
$$

Another type of discontinuity is the vertical asymptote, where the limit goes to positive or negative infinity as x approaches some real number a. We can determine these analytically by first removing the removable discontinuities and analyzing the leftover function.
Consider $f(x)=\frac{x^{2}+x-2}{x^{2}-1}$. Then

$$
\lim _{x \rightarrow-1^{+}} \frac{x^{2}+x-2}{x^{2}-1}=\lim _{x \rightarrow-1^{+}} \frac{(x-1)(x+2)}{(x-1)(x+1)}=\lim _{x \rightarrow-1^{+}} \frac{x+2}{x+1}=\infty
$$

since the numerator approaches 1 from the right and the denominator approaches 0 from the right.

There are also horizontal asymptotes that bound the range of the function as x tends toward $\pm \infty$. These require a bit more trickery and application of our limit laws (Theorem 2.3 in the book). I've included two examples.

Example 1. Let $f(x)=13+\frac{7}{x+6}$ and find $\lim _{x \rightarrow \infty} f(x)$. Well, we have

$$
\lim _{x \rightarrow \infty} 13+\frac{7}{x+6}=\left(\lim _{x \rightarrow \infty} 13\right)+\left(\lim _{x \rightarrow \infty} \frac{7}{x+6}\right)=13+0=13
$$

Example 2. Let $f(x)=2 x+1-\sqrt{4 x^{2}+5}$ and find $\lim _{x \rightarrow \infty} f(x)$. It's not obvious in this
form what our limit would be, so we need to cleverly change the form of the function.

$$
\begin{aligned}
f(x) & =2 x+1-\sqrt{4 x^{2}+5} \\
& =\frac{2 x+1-\sqrt{4 x^{2}+5}}{1} \cdot \frac{2 x+1+\sqrt{4 x^{2}+5}}{2 x+1+\sqrt{4 x^{2}+5}} \\
& =\frac{4 x-4}{2 x+1+\sqrt{4 x^{2}+5}} .
\end{aligned}
$$

What we notice is that, for sufficiently large $x, \lim _{x \rightarrow \infty} \sqrt{4 x^{2}+5}=\lim _{x \rightarrow \infty} 2 x$, so

$$
\lim _{x \rightarrow \infty} \frac{4 x-4}{2 x+1+\sqrt{4 x^{2}+5}}=\lim _{x \rightarrow \infty} \frac{4 x-4}{2 x+1+2 x}=\lim _{x \rightarrow \infty} \frac{4 x-4}{4 x+1} .
$$

Now we notice that $\lim _{x \rightarrow \infty} \sqrt{4 x-4}=\lim _{x \rightarrow \infty} 4 x$, and similarly for the denominator, so

$$
\lim _{x \rightarrow \infty} \frac{4 x-4}{4 x+1}=\lim _{x \rightarrow \infty} \frac{4 x}{4 x}=\lim _{x \rightarrow \infty} 1=1
$$

Recall that a function $f(x)$ is continuous at $x=a$ if $\lim _{x \rightarrow a} f(x)=f(a)$, that is, if the limit exists and agrees with the function value. We say that the function is continuous if it is continuous at every point in its domain.

We also have a sweet theorem for continuity that is more-or-less analogous to Theorem 2.3 for limits:

Theorem (2.9-Continuity Rules). If f and g are continuous at a, then the following functions are continuous at a. Assume c is a constant.

$$
\begin{aligned}
& \text { a. } f \pm g \\
& \text { b. } c f \\
& \text { c. } f g \\
& \text { d. } \frac{f}{g}, \text { if } g(a) \neq 0
\end{aligned}
$$

Theorem (2.15 - Intermediate Value Theorem). Suppose f is continuous on the interval $[a, b]$ and L is a number between $f(a)$ and $f(b)$. Then there is at least one number c in (a, b) satisfying $f(c)=L$.

Assignment

MAT270 Recitation Notebook

§2.4, Problems 3
§2.5, Problems 1,4
§2.6, Problems 4,6

