MAT270 Exam 3 Review

Fall 2013

This is in no way a complete list of topics covered in class, but merely a compilation of the types of exercises commonly encountered.

1. Use the various first and second derivative techniques (intervals of increase/decrease, intervals of concavity) to make a complete graph of the functions on their domains or in the given interval.
a. $f(x)=\frac{x^{4}}{2}-3 x^{2}+4 x+1$
b. $f(x)=\frac{x^{2}+x}{4-x^{2}}$
c. $f(x)=\frac{\cos (\pi x)}{1+x^{2}}$ on $[-2,2]$.
2. Optimization.
a. A right triangle has legs of length h and r and a hypotenuse of length 4. It is revolved about the leg of length h to sweep out a right circular cone. What values of h and r maximize the volume of the cone?
b. What two nonnegative (so, possibly zero) real numbers a who sum is 23 maximize $a^{2}+b^{2}$? Minimize $a^{2}+b^{2}$?
c. What point of the graph of $f(x)=\frac{5}{2}-x^{2}$ is closest to the origin $(0,0)$? (Hint: you can minimize the square of the distance)
3. State Rolle's Theorem.
4. State the Mean Value Theorem.
5. Evaluate the following limits. Use L'Hôpital's Rule when needed.
a. $\lim _{t \rightarrow 2} \frac{t^{3}-t^{2}-2 t}{t^{2}-4}$
b. $\lim _{\theta \rightarrow 0} 2 \theta \cot (3 \theta)$
c. $\lim _{\gamma \rightarrow 0} \frac{e^{-2 x}-1+2 x}{x^{2}}$
d. $\lim _{x \rightarrow 0^{+}} \frac{\ln ^{10}(y)}{\sqrt{y}}$
e. $\lim _{x \rightarrow \infty} \frac{5 x^{2}+2 x-5}{\sqrt{x^{4}-1}}$
6. Determine the following indefinite integrals.
a. $\int\left(x^{8}-3 x^{3}+1\right) d x$
b. $\int 2 \sec ^{2}(x) d x$
c. $\frac{12}{x} d x$
d. $\frac{1+\tan (\theta)}{\sec (\theta)} d \theta$
7. Find the function with the following properties:
a. $f^{\prime}(x)=3 x^{2}-1$ and $f(0)=10$
b. $g^{\prime}(t)=\sin (t)+2 t$ and $g(0)=5$
8. A rocket is launched vertically upward with an initial velocity of $120 \mathrm{~m} / \mathrm{s}$ from a platform that is 125 m above the ground. Assume that the only force at work is gravity. Determine and graph the velocity and position functions of the rocket for $t \geq 0$.
9. For each of the following integrals, write the equations for left, middle, and right Riemann sums for an arbitrary partition n.
a. $\int_{-2}^{2}\left(3 x^{4}-2 x+1\right) d x$
b. $\int_{0}^{1} \frac{1}{\sqrt{4-x^{2}}} d x$
c. $\int_{0}^{\pi / 2} \sin (\theta) d \theta$
10. Evaluate the following integrals.
a. $\int_{-2}^{2}\left(3 x^{4}-2 x+1\right) d x$
b. $\int_{0}^{\pi / 2} \sin (\theta) d \theta$
c. $\int y^{2}\left(3 y^{3}+1\right)^{4} d y$
d. $\int \cos (3 x) d x$
