## MAT270 Exam 1 Review

## Fall 2013

This is in no way a complete list of topics covered in class, but merely a compilation of the types of exercises commonly encountered.

1. Use the graph of f in the figure to the right to find the following values, if possible.

1

**a.** 
$$f(-1)$$

$$\mathbf{b.} \lim_{x \to -1^-} f(x)$$

$$\mathbf{c.} \lim_{x \to -1^+} f(x)$$

$$\mathbf{d.} \lim_{x \to -1} f(x)$$

**e.** 
$$f(1)$$

$$\mathbf{f.} \ \lim_{x \to 1} f(x)$$

$$\mathbf{g.} \lim_{x \to 2} f(x)$$

$$\mathbf{h.} \lim_{x \to 3^{-}} f(x)$$

$$\mathbf{i.} \ \lim_{x \to 3^+} f(x)$$

$$\mathbf{j.} \lim_{x \to 3} f(x)$$



2. Calculate the following limits analytically.   
 a. 
$$\lim_{x\to 1} \frac{x^3 - 7x^2 + 12x}{4 - x}$$

**b.** 
$$\lim_{x \to 4} \frac{x^3 - 7x^2 + 12x}{4 - x}$$

c. 
$$\lim_{p \to 1} \frac{p^5 - 1}{p - 1}$$

**d.** 
$$\lim_{x \to 3} \frac{x^4 - 81}{x - 3}$$

e. 
$$\lim_{\theta \to \pi/4} \frac{\sin^2(\theta) - \cos^2(\theta)}{\sin(\theta) - \cos(\theta)}$$

**f.** 
$$\lim_{x \to \pi/2} \frac{\frac{1}{\sqrt{\sin(x)}} - 1}{x + \pi/2}$$

**3.** State the Squeeze Theorem.

4. Use the Squeeze Theorem to compute the following limits.

**a.** 
$$\lim_{x\to 0} x \sin(x)$$
 [Hint:  $-1 \le \sin(x) \le 1$  for all  $x$ .]

**b.** 
$$\lim_{x \to \infty} \frac{2 - \cos(x)}{x + 3}$$
 [Hint:  $1 \le 2 - \cos(x) \le 3$  for all  $x$ .]

**5.** If possible, determine the following infinite limits.

**a.** 
$$\lim_{x \to -5^+} \frac{x-5}{x+5}$$

**b.** 
$$\lim_{x \to -5^-} \frac{x-5}{x+5}$$

**c.** 
$$\lim_{x \to -5} \frac{x-5}{x+5}$$

6. Find the horizontal asymptote(s) of each of the following functions, if they exist.

**a.** 
$$f(x) = \frac{x^4 + 2}{x^5 + 2}$$

**b.** 
$$f(x) = -3x^3 + 5$$

**c.** 
$$f(x) = \frac{1}{\ln(x) + 1}$$

**d.** 
$$f(x) = \sinh(x) = \frac{e^x - e^{-x}}{2}$$

7. State the Intermediate Value Theorem.

8. Determine whether or not each of the following functions is continuous at the point given.

**a.** 
$$f(x) = \frac{1}{x-5}$$
; at  $x = 5$ 

**b.** 
$$f(x) = \frac{x^2 - 25}{x - 5}$$
; at  $x = 5$ 

**c.** 
$$f(x) = \frac{3x^2 + 2x + 1}{x - 1}$$
; at  $x = 2$ 

**d.** 
$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0 \end{cases}$$
; at  $x = 0$ 

[Hint: Use the Squeeze Theorem to determine the limit of f(x) as  $x \to 0$ .]

**9.** State the formal  $\varepsilon$ - $\delta$  definition of a limit of a function.

10. Give a formal proof of each of the following limits.

a. 
$$\lim_{x \to 1} (5x - 2) = 3$$

**b.** 
$$\lim_{x \to 5} \frac{x^2 - 25}{x - 5} = 10$$

11. Find the slope of the tangent line of the following functions at the given points.

**a.** 
$$f(x) = 4x^2 - 1$$
; at  $x = 4$ 

**b.** 
$$f(x) = x^3 + 3$$
; at  $x = -3$ 

**c.** 
$$f(x) = \frac{1}{x}$$
; at  $x = 1$