1. We use the shell method, and so integrate with respect to x. At each fixed x, the cylindrical shell has radius $r=x$ and height $h=x^{3}$, and so the volume of the solid is

$$
\begin{aligned}
V & =\int_{1}^{2} 2 \pi r h d x \\
& =2 \pi \int_{1}^{2} x \cdot x^{3} d x \\
& =2 \pi \int_{1}^{2} x^{4} d x \\
& =\pi\left[\frac{2}{5} x^{5}\right]_{1}^{2} \\
& =\frac{62}{5} \pi \approx 38.95575
\end{aligned}
$$

2. We use the shell method, and so integrate with respect to x. At each x, the cylindrical shell has radius $r=(x-1)$ and height $h=\left(4 x-x^{2}\right)-3$, and so the volume of the solid is

$$
\begin{aligned}
V & =\int_{1}^{3} 2 \pi r h d x \\
& =2 \pi \int_{1}^{3}(x-1)\left(4 x-x^{2}-3\right) d x \\
& =2 \pi \int_{1}^{3}-x^{3}+5 x^{2}-7 x+3 d x \\
& =2 \pi\left[-\frac{1}{2} x^{3}+\frac{5}{3} x^{3}-\frac{7}{2} x+3 x\right]_{1}^{3} \\
& =\frac{8}{3} \pi \approx 8.37758
\end{aligned}
$$

3. We first note the following (which can be found in the table of integrals or with a combination of trig substitution and integration by parts).

$$
\int \sqrt{u^{2}+a^{2}} d u=\frac{a^{2}}{2} \ln \left|\sqrt{a^{2}+u^{2}}+u\right|+\frac{u}{2} \sqrt{a^{2}+u^{2}}+C
$$

Now,

$$
1+\left(y^{\prime}\right)^{2}=1+\frac{1}{400}(x-50)^{2}=\left(\frac{1}{20}\right)^{2}\left[20^{2}+(x-50)^{2}\right]
$$

and thus the distance the kite traveled from $x=0$ to $x=80$ is

$$
\begin{aligned}
\mathcal{L} & =\int_{0}^{80} \sqrt{1+\left(y^{\prime}\right)^{2}} d x \\
& =\int_{0}^{80} \sqrt{\left(\frac{1}{20}\right)^{2}\left[20^{2}+(x-50)^{2}\right]} d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{20} \int_{0}^{80} \sqrt{20^{2}+(x-50)^{2}} d x \\
& =\frac{1}{20}\left[\frac{400}{2} \ln \left|\sqrt{400+(x-50)^{2}}+(x-50)\right|+\frac{(x-50)}{2} \sqrt{400+(x-50)^{2}}\right]_{0}^{80} \\
& \approx 122.77614 \mathrm{ft}
\end{aligned}
$$

4. The bird lets go at $x=0 \mathrm{~m}$ (the max of the parabola) and hits the ground when $x=90 \mathrm{~m}$. Now, we have that

$$
1+\left(y^{\prime}\right)^{2}=1+\left(\frac{2}{45}\right)^{2} x^{2}=\left(\frac{2}{45}\right)^{2}\left[\left(\frac{45}{2}\right)^{2}+x^{2}\right]
$$

and thus the distance traveled by the prey is

$$
\begin{aligned}
\mathcal{L} & =\int_{0}^{90} \sqrt{1+\left(y^{\prime}\right)^{2}} d y \\
& =\int_{0}^{90} \sqrt{\left(\frac{2}{45}\right)^{2}\left[\left(\frac{45}{2}\right)^{2}+x^{2}\right]} d x \\
& =\int_{0}^{90} \frac{2}{45} \sqrt{\left(\frac{45}{2}\right)^{2}+x^{2}} d x \\
& =\frac{2}{45}\left[\frac{2}{45^{2}} \ln \left|\sqrt{\left(\frac{45}{2}\right)^{2}+x^{2}}+x\right|+\frac{x}{2} \sqrt{\left(\frac{45}{2}\right)^{2}+x^{2}}\right]_{0}^{90} \\
& \approx 209.10527 \mathrm{~m}
\end{aligned}
$$

5. This amounts to finding the arc length of the function $y=\sin (\pi x / 7)$ for $0 \leq x \leq 28$. Since $y^{\prime}=\frac{\pi}{7} \cos (\pi x / 7)$, we get that the arc length w is given by the integral

$$
w=\int_{0}^{28} \sqrt{1+\left(y^{\prime}\right)^{2}} d x=\int_{0}^{28} \sqrt{1+\frac{\pi^{2}}{49} \cos ^{2}\left(\frac{\pi x}{7}\right)} d x
$$

The indefinite integral does not have a closed form in terms of elementary functions, but with numerical techniques we get that $w \approx 29.3607 \mathrm{in}$.
6. We place the bottom of the tank at the origin. A vertical cross-sectional slice of the paraboloid is the parabola $y=x^{2} / 4$, and so at each height y, the slice of water is a circle of radius $\sqrt{4 y}$. Thus, the volume of each infinitesimal slice is $V(y)=4 \pi y d y$.
a. The work done in emptying the tank is

$$
\begin{aligned}
W & =\int_{0}^{4} \rho g(4-y) V(y) \\
& =4 \pi(62.5) \int_{0}^{4} 4 y-y^{2} d y \\
& =250 \pi\left[2 y^{2}-\frac{1}{3} y^{3}\right]_{0}^{4} \\
& =\frac{8000 \pi}{3} \approx 8377.6 \mathrm{ft}-\mathrm{lb}
\end{aligned}
$$

b. After $4000 \mathrm{ft}-\mathrm{lb}$ of work has been done, h feet of water remain in the tank. Since we're draining the water from the top of the tank, the work done in draining this is

$$
\begin{aligned}
4000 & =250 \pi \int_{h}^{4} 4 y-y^{2} d y \\
& =-\frac{250}{3} \pi(h-4)^{2}(h+2)
\end{aligned}
$$

Solving for h (and noting that $0<h<4$), we get that there is only $h \approx 2.06011 \mathrm{ft}$ of water left in the tank.

