1. We'll begin by making the substitution $x=-M v^{2} /(2 R T), d x=-M v /(R T) d v$. Notice that as $v \rightarrow \infty, x \rightarrow-\infty$. So our integral becomes

$$
\begin{aligned}
\bar{v} & =\frac{4}{\sqrt{\pi}}\left(\frac{M}{2 R T}\right)^{3 / 2} \int_{0}^{\infty} v^{3} e^{-M v^{2} /(2 R T)} d v \\
& =\frac{4}{\sqrt{\pi}}\left(\frac{M}{2 R T}\right)^{3 / 2}\left(-\frac{R T}{M}\right)\left(-\frac{2 R T}{M}\right) \int_{0}^{-\infty} x e^{x} d x \\
& =\sqrt{\frac{8 R T}{\pi M}} \int_{0}^{-\infty} x e^{x} d x \\
& =\lim _{t \rightarrow-\infty} \sqrt{\frac{8 R T}{\pi M}} \int_{0}^{t} x e^{x} d x \\
& =\lim _{t \rightarrow-\infty} \sqrt{\frac{8 R T}{\pi M}}\left[x e^{x}-e^{x}\right]_{0}^{t} \\
& =\lim _{t \rightarrow-\infty} \sqrt{\frac{8 R T}{\pi M}}\left[\left(t e^{t}-e^{t}\right)-(0-1)\right] \\
& =\sqrt{\frac{8 R T}{\pi M}}
\end{aligned}
$$

(integration by parts)

Note that evaluating the limit did require the use of L'Hospital's Rule as we have an " $\infty \cdot 0$ " indeterminate form.
2. We note that, because k is negative, as $t \rightarrow \infty, e^{k} \rightarrow 0$ (this will be useful in evaluating the limit).

$$
\begin{array}{rlr}
M & =-k \int_{0}^{\infty} t e^{k t} d t & \\
& =\lim _{b \rightarrow \infty}-k \int_{0}^{b} t e^{k t} d t & \\
& =\lim _{b \rightarrow \infty}-k\left[\frac{1}{k} t e^{k t}-\frac{1}{k^{2}} e^{k t}\right]_{0}^{b} & \\
& =\lim _{b \rightarrow \infty}-k\left[\left(\frac{1}{k} b e^{k b}-\frac{1}{k^{2}} e^{k b}\right)-\left(0-\frac{1}{k^{2}}\right)\right] & \\
& =\lim _{b \rightarrow \infty}\left[-b e^{k b}+\frac{1}{k} e^{k b}-\frac{1}{k}\right] & \\
& =\lim _{b \rightarrow \infty}\left[-\frac{b}{e^{-k b}}+\frac{1}{k} e^{k b}-\frac{1}{k}\right] & \\
& =\lim _{b \rightarrow \infty}\left[-\frac{1}{-k e^{-k b}}+\frac{1}{k} e^{k b}-\frac{1}{k}\right] \\
& =[0+0 \text { " indetegration by parts) } \\
& \text { (" } \infty / \infty \text { " indeterminate form) } \\
\text { (L'Hospital's rule) } \\
&
\end{array}
$$

3. Using Simpson's Rule with $\Delta x=2 \mathrm{~m}$ we have that the swimming pool area is approximately

$$
\begin{aligned}
& \frac{2 \mathrm{~m}}{3}[0 \mathrm{~m}+4(6.2 \mathrm{~m})+2(7.2 \mathrm{~m})+4(6.8 \mathrm{~m})+2(5.6 \mathrm{~m})+4(5.0 \mathrm{~m})+2(4.8 \mathrm{~m})+4(4.8 \mathrm{~m})+0 \mathrm{~m}] \\
& \quad \approx 84.267 \mathrm{~m}^{2}
\end{aligned}
$$

4. Recall that the annual profits with continual growth rate r are given by $A(t)=\$ 893,000 e^{r t}$ (where t is in years). The total profit is found by integrating $A(t)$, and so the difference in cumulative total profit over 5 between at 3.5% growth rate and a 5% growth rate is

$$
\$ 893,000 \int_{0}^{5} e^{0.05 t}-e^{0.035 t} d t=\$ 893,000\left[\frac{1}{0.05} e^{0.05 t}-\frac{1}{0.035} e^{0.035 t}\right]_{0}^{5}=\$ 193,183
$$

5. Using the Trapezoid Rule with $\Delta x=1.5 \mathrm{~cm}$ we have that the liver's volume is approximately

$$
\begin{aligned}
& \frac{1.5 \mathrm{~cm}}{2}\left[0 \mathrm{~cm}^{2}+2\left(18 \mathrm{~cm}^{2}\right)+2\left(58 \mathrm{~cm}^{2}\right)+2\left(79 \mathrm{~cm}^{2}\right)+2\left(94 \mathrm{~cm}^{2}\right)+2\left(106 \mathrm{~cm}^{2}\right)+2\left(117 \mathrm{~cm}^{2}\right)+\right. \\
& \left.\quad+2\left(128 \mathrm{~cm}^{2}\right)+2\left(63 \mathrm{~cm}^{2}\right)+2\left(39 \mathrm{~cm}^{2}\right)+0 \mathrm{~cm}^{2}\right]=1053 \mathrm{~cm}^{3}
\end{aligned}
$$

6. We can view this as a solid of revolution in the following way: Place the center of the base circle at the origin. The slanted edge of the frustum passes through the points $(R, 0)$ and (r, h), and so the line representing this edge is precisely $y=\left(\frac{h}{r-R}\right)(x-R)$. Since we'll be using the disk method, we integrate with respect to y. At each fixed y, the radius of this disk is $x=\left(\frac{r-R}{h}\right) y+R$, and so the volume of the solid is

$$
\begin{aligned}
V & =\int_{0}^{h} \pi x^{2} d y \\
& =\pi \int_{0}^{h}\left(\frac{r-R}{h} y+R\right)^{2} d y \\
& =\pi \int_{0}^{h}\left(\frac{r-R}{h}\right)^{2} y^{2}+2 \pi \frac{R(r-R)}{h} y+\pi R^{2} d y \\
& =\pi\left[\frac{1}{3}\left(\frac{r-R}{h}\right)^{2} y^{3}+\frac{R(r-R)}{h} y^{2}+R^{2} y\right]_{0}^{h} \\
& =\frac{1}{3} \pi h\left(r^{2}+r R+R^{2}\right)
\end{aligned}
$$

