1. a. We have that the Taylor series for $\cos (x)$ at $a=0$ is

$$
\cos (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}
$$

whence

$$
\cos \left(x^{3}\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{6 n}}{(2 n)!} .
$$

b. It's not too hard to see that

$$
f^{(n)}(x)=2^{n} e^{2 x} \quad \Rightarrow \quad f^{(n)}(3)=2^{n} e^{6}
$$

whence the Taylor expansion around $a=3$ is

$$
e^{2 x}=\sum_{n=0}^{\infty} \frac{2^{n} e^{6}(x-3)^{n}}{n!}
$$

c. It's not too hard to see that

$$
\left.f^{(n)}(x)=\frac{(-1)^{n} \cdot n!}{x^{n+1}} \Rightarrow f^{(} n\right)(-3)=\frac{(-1)^{n} \cdot n!}{(-3)^{n+1}}=-\frac{n!}{3^{n+1}}
$$

whence the Taylor expansion around $a=-3$ is

$$
\frac{1}{x}=\sum_{n=0}^{\infty}-\frac{1}{3^{n+1}}(x+3)^{n}
$$

d. We have that the Taylor series for $\cos (x)$ at $a=0$ is

$$
\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}
$$

whence the Taylor series expansion of $\sin x$ around $a=\frac{\pi}{2}$ is

$$
\sin x=\cos \left(x-\frac{\pi}{2}\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}\left(x-\frac{\pi}{2}\right)^{2 n}
$$

2. Knowing that

$$
\ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n}+1 x^{n}}{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots
$$

we get

$$
\begin{aligned}
\frac{x-\ln (1+x)}{x^{2}} & =\frac{x-\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots\right)}{x^{2}} \\
& =\frac{\frac{x^{2}}{2}-\frac{x^{3}}{3}+\frac{x^{4}}{4}+\cdots}{x^{2}} \\
& =\frac{1}{2}-\frac{x}{3}+\frac{x^{2}}{4}-\cdots
\end{aligned}
$$

And thus

$$
\lim _{x \rightarrow 0} \frac{x-\ln (1+x)}{x^{2}}=\lim _{x \rightarrow 0}\left(\frac{1}{2}-\frac{x}{3}+\frac{x^{2}}{4}-\cdots\right)=\frac{1}{2}
$$

3. For the most accurate approximation, we should center our series around 0 . Using the (Maclaurin) binomial series with $k=-1 / 2$, we get

$$
\begin{aligned}
\frac{1}{\sqrt{1+x^{3}}} & =\left(1+x^{3}\right)^{-1 / 2} \\
& =1+\frac{\left(-\frac{1}{2}\right)}{1!} x^{3}+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!} x^{6}+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{3!} x^{9}+\cdots
\end{aligned}
$$

Taking the $9^{\text {th }}$ order Maclaurin polynomial (it may be overkill, but it's only a few nonzero terms), we approximate that

$$
\frac{1}{\sqrt{1+x^{3}}} \approx 1-\frac{x^{3}}{2}+\frac{3 x^{6}}{8}-\frac{5 x^{9}}{16} .
$$

Thus

$$
\begin{aligned}
\int_{0}^{0.1} \frac{d x}{\sqrt{1+x^{3}}} & \approx \int_{0}^{0.1} 1-\frac{x^{3}}{2}+\frac{3 x^{6}}{8}-\frac{5 x^{9}}{16} d x \\
& =0.0999875
\end{aligned}
$$

In fact, according to our favorite computer algebra system

$$
\int_{0}^{0.1} \frac{d x}{\sqrt{1+x^{3}}} \approx 0.0999875
$$

and so our approximation is accurate to at least 5 decimal places.

MAT266 Homework 09 (Solutions)

4. The Cartesian equation of this curve is $x=(y-4)^{2}-4, \quad 1 \leq y \leq 5$.

5. The Cartesian equation of this curve is $y=\sqrt{x-1}$.

6. The Cartesian equation of this curve is $y=\frac{1}{x}, \quad 0 \leq x<1$.

7. The Cartesian equation of this curve is $\frac{x^{2}}{2^{2}}+\frac{(y-1)^{2}}{1^{2}}=1$.

