MAT266 HOMEWORK 09 (SOLUTIONS)

. We have that the Taylor series for cos(z) at a =0 is

whence

It’s not too hard to see that
f(n) (Z’) _ 2n62x = f(n) (3) _ 2”66

whence the Taylor expansion around a = 3 is
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It’s not too hard to see that
)y — (D"t (N (ay — (Dt n!
f (1:) - pntl = f n)( 3) o (_3)n+1 - 3n+l

whence the Taylor expansion around a = —3 is
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. We have that the Taylor series for cos(z) at a =0 is
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whence the Taylor series expansion of sinz around a = 7 is

sinx = cos(x — g) = Z &;:L;T

n=0
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Knowing that

(=1 + 1z N
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n(l+ z) nz:l - Tty -t
we get
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And thus
, x—ln(l—l—x)_l, 1 x+ac2 !
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For the most accurate approximation, we should center our series around 0. Using the
(Maclaurin) binomial series with & = —1/2, we get
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=1+

(1+ :c3)_1/2

Taking the 9" order Maclaurin polynomial (it may be overkill, but it’s only a few nonzero
terms), we approximate that

1 3 3x% 5
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Thus

0.1 dx 0.1 .I3
| o [ -5 -
0 vV 1 + IS 0 2 8 16
=10.0999875.

In fact, according to our favorite computer algebra system

Ol dx

o V1+a?

and so our approximation is accurate to at least 5 decimal places.

~ 0.0999875
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4. The Cartesian equation of this curve is ‘QE =(y—4)?*—4, 1<y<5. ‘

5. The Cartesian equation of this curve is |y = Vo — 1.

1
6. The Cartesian equation of this curve is |y = —, 0 <z < 1.
x

—0.5 0.5 1 1.5

7. The Cartesian equation of this curve is | — + ~————— = 1.




