1. We have that

$$
\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x}{n+1}\right|=0
$$

So, by the ratio test, this converges for all x-values. Thus the radius of convergence is $R=\infty$ and the interval of convergence is $(-\infty, \infty)$.
2. We have that

$$
\lim _{n \rightarrow \infty}\left|\frac{(x-2)^{n+1}}{(n+1)^{2}+1} \cdot \frac{n^{2}+1}{(x-2)^{n}}\right|=\lim _{n \rightarrow \infty}\left|(x-2) \cdot \frac{(n+1)^{2}+1}{n^{2}+1}\right|=|x-2| .
$$

By the Ratio Test, this converges when $|x-2|<1$, and so the radius of convergence is $R=1$. The open interval of convergence is $(1,3)$. When $x=1$, this series converges by the Alternating Series Test. When $x=3$, this series converges by comparison with $\sum \frac{1}{n^{2}}$. Thus the interval of convergence is $[1,3]$.
3. We have that

$$
\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{(n+1) 3^{n+1}} \cdot \frac{n 3^{n}}{x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x}{3} \cdot \frac{n}{n+1}\right|=\left|\frac{x}{3}\right| .
$$

By the Ratio Test, this converges when $\left|\frac{x}{3}\right|<1$, or rather, when $|x|<3$. Thus the radius of convergence is $R=3$ and the open interval of convergence is $(-3,3)$. When $x=-3$ the series converges by the Alternating Series Test, and when $x=3$ it diverges since it is the harmonic series. Thus the interval of convergence is $[-3,3)$.
4. We see by the divergence test that the series diverges for all $x \neq \frac{1}{2}$. However, when $x=\frac{1}{2}$, we are effectively summing up 0 infinitely many times, and so the series converges only at $x=\frac{1}{2}$. As such, we write that the radius of convergence is $R=0$ and the interval of convergence is $\left[\frac{1}{2}, \frac{1}{2}\right]$, or $\left\{\frac{1}{2}\right\}$.
5.
6. Given the usual power series for $1 /(1-x)$, we get

$$
\begin{aligned}
f(x)=\frac{1}{1+x} & =\frac{1}{1-(-x)} \\
& =\sum_{n=0}^{\infty}(-x)^{n} \\
& =\sum_{n=0}^{\infty}(-1)^{n} x^{n}
\end{aligned}
$$

The open interval of convergence is $(-1,1)$.
7. Given the usual power series for $1 /(1-x)$, we get

$$
\begin{aligned}
f(x)=\frac{x}{2 x^{2}+1} & =x \cdot\left(\frac{1}{1-\left(-2 x^{2}\right)}\right) \\
& =x \cdot \sum_{n=0}^{\infty}\left(-2 x^{2}\right)^{n} \\
& =x \cdot \sum_{n=0}^{\infty}(-1)^{n} 2^{n} x^{2 n} \\
& =\sum_{n=0}^{\infty}(-1)^{n} 2^{n} x^{2 n+1}
\end{aligned}
$$

The open interval of convergence is $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.
8.
9.
10.

