MAT266 HOMEWORK 08 (SOLUTIONS)
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So, by the ratio test, this converges for all z-values. Thus the radius of convergence is| R = oo

and the interval of convergence is | (—00, 00) |.

We have that
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By the Ratio Test, this converges when |z — 2| < 1, and so the radius of convergence is
R = 1| The open interval of convergence is (1,3). When x = 1, this series converges by the
Alternating Series Test. When x = 3, this series converges by comparison with » 711—2 Thus

the interval of convergence is |[1, 3] |.

We have that
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By the Ratio Test, this converges when ‘%‘ < 1, or rather, when |z| < 3. Thus the radius

of convergence is and the open interval of convergence is (—3,3). When x = —3 the
series converges by the Alternating Series Test, and when x = 3 it diverges since it is the

harmonic series. Thus the interval of convergence is |[—3, 3) |

We see by the divergence test that the series diverges for all x # % However, when = = %, we
are effectively summing up 0 infinitely many times, and so the series converges only at x = %

As such, we write that the radius of convergence is and the interval of convergence is
11 1
—,—|,or ¢=-¢.
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Given the usual power series for 1/(1 — x), we get
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The open interval of convergence is | (—1,1).
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7. Given the usual power series for 1/(1 — z), we

get
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The open interval of convergence is
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