1. $a_{n}=\frac{(-1)^{n+1} n^{2}}{n+1}$
2. a. Since $|0.2|<1$,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty}\left[1-(0.2)^{n}\right] \\
& =\left[\lim _{n \rightarrow \infty} 1\right]-\left[\lim _{n \rightarrow \infty}(0.2)^{n}\right] \\
& =1-0=1, \text { convergent. }
\end{aligned}
$$

b. Since $\left|\frac{3}{5}\right|<1$,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty} \frac{3^{n}}{5^{n+2}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{25}\left(\frac{3}{5}\right)^{n} \\
& =\frac{1}{25} \cdot\left[\lim _{n \rightarrow \infty}\left(\frac{3}{5}\right)^{n}\right] \\
& =\frac{1}{25} \cdot 0=0, \text { convergent. }
\end{aligned}
$$

c. Note that $-\frac{1}{2 \sqrt{n}}<a_{n}<\frac{1}{2 \sqrt{n}}$ for each n. We have

$$
\begin{gathered}
\lim _{n \rightarrow \infty}-\frac{1}{2 \sqrt{n}}=0 \\
\lim _{n \rightarrow \infty} \frac{1}{2 \sqrt{n}}=0
\end{gathered}
$$

Thus, by the squeeze theorem,

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{2 \sqrt{n}}=0, \text { convergent. }
$$

3. a. We see that this is a geometric series with ratio $r=0.25$ and first term $a=2$. Since $|r|<1$,

$$
2+0.5+0.125+0.03125+\cdots=\frac{a}{1-r}=\frac{2}{1-0.25}=\frac{8}{3}, \text { convergent. }
$$

b. We see that this is a geometric series with ratio $r=-\frac{10}{9}$ and first term $a=10$. Since $|r| \geq 1$, the series diverges.
4. Determine whether the series is convergent or divergent. If it is convergent, find its sum.
a. Since

$$
\lim _{k \rightarrow \infty} \frac{k(k+2)}{(k+3)^{2}}=1 \neq 0
$$

the series diverges by the Divergence Test.
b. We have that $\sum_{n=1}^{\infty} \frac{1}{3^{n}}$ is a geometric series with ratio $r=\frac{1}{3}$ and first term $a=\frac{1}{3}$, and $\sum_{n=1}^{\infty} \frac{2^{n}}{3^{n}}$ is a geometric series with ratio $r=\frac{2}{3}$ and first term $a=\frac{2}{3}$. Each of these geometric series converges by the geometric series test, and thus

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1+2^{n}}{3^{n}}=\sum_{n=1}^{\infty}\left(\frac{1}{3^{n}}+\frac{2^{n}}{3^{n}}\right) & =\sum_{n=1}^{\infty} \frac{1}{3^{n}}+\sum_{n=1}^{\infty} \\
& =\left(\frac{\frac{1}{3}}{1-\frac{1}{3}}\right)+\left(\frac{\frac{2}{3}}{1-\frac{2}{3}}\right) \\
& =\frac{1}{2}+2=\frac{5}{2}, \text { convergent. }
\end{aligned}
$$

c. Since the limit

$$
\lim _{k \rightarrow \infty}(\cos 1)^{k}
$$

does not exist (and in particular, is not 0). So, by the Divergence Test, the series is divergent.
d. Recall that $\ln \left(\frac{n}{n+1}\right)=\ln (n)-\ln (n+1)$. Letting $s_{k}=\sum_{n=1}^{k} a_{n}$, we have

$$
\begin{aligned}
& s_{1}=\ln 1-\ln 2=-\ln 2 \\
& s_{2}=\ln 1-\ln 2+\ln 2-\ln 3=-\ln 3 \\
& s_{3}=\ln 1-\ln 2+\ln 2-\ln 3+\ln 3-\ln 4=1-\ln 4 \\
& \quad \vdots \\
& s_{k}=-\ln k .
\end{aligned}
$$

And since $s_{k} \rightarrow-\infty$ as $k \rightarrow \infty$, the series diverges.
5. a. We have that $a_{n}=\frac{n}{5^{n}}$ and $a_{n+1}=\frac{n+1}{5^{n+1}}$. Thus

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{n+1}{5^{n+1}} \cdot \frac{5^{n}}{n}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{1}{5} \cdot \frac{n+1}{n}\right|=\frac{1}{5} .
\end{aligned}
$$

By the ratio test, this series is absolutely convergent.
b. We have that $a_{n}=\frac{(-10)^{n}}{n!}$ and $a_{n+1}=\frac{(-10)^{n+1}}{(n+1)!}$. Thus

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(-10)^{n+1}}{(n+1)!} \cdot \frac{n!}{(-10)^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{-10}{n+1}\right|=0
\end{aligned}
$$

By the ratio test, this series is absolutely convergent.
c. By the ratio test, this series is absolutely convergent.
d. By the ratio test, this series is absolutely convergent.

