1. $a_n = \frac{(-1)^{n+1}n^2}{n+1}$ 2. a. Since |0.2| < 1,

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} [1 - (0.2)^n]$$
$$= \left[\lim_{n \to \infty} 1\right] - \left[\lim_{n \to \infty} (0.2)^n\right]$$
$$= 1 - 0 = 1, \text{ convergent.}$$

b. Since $\left|\frac{3}{5}\right| < 1$,

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{3^n}{5^{n+2}}$$
$$= \lim_{n \to \infty} \frac{1}{25} \left(\frac{3}{5}\right)^n$$
$$= \frac{1}{25} \cdot \left[\lim_{n \to \infty} \left(\frac{3}{5}\right)^n\right]$$
$$= \frac{1}{25} \cdot 0 = \boxed{0, \text{ convergent.}}$$

c. Note that $-\frac{1}{2\sqrt{n}} < a_n < \frac{1}{2\sqrt{n}}$ for each *n*. We have

$$\lim_{n \to \infty} -\frac{1}{2\sqrt{n}} = 0,$$
$$\lim_{n \to \infty} \frac{1}{2\sqrt{n}} = 0.$$

Thus, by the squeeze theorem,

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{(-1)^n}{2\sqrt{n}} = 0, \text{ convergent.}$$

3. a. We see that this is a geometric series with ratio r = 0.25 and first term a = 2. Since |r| < 1,

$$2 + 0.5 + 0.125 + 0.03125 + \dots = \frac{a}{1 - r} = \frac{2}{1 - 0.25} = \frac{8}{3}$$
, convergent.

- **b.** We see that this is a geometric series with ratio $r = -\frac{10}{9}$ and first term a = 10. Since $|r| \ge 1$, the series diverges.
- Determine whether the series is convergent or divergent. If it is convergent, find its sum.
 a. Since

$$\lim_{k \to \infty} \frac{k(k+2)}{(k+3)^2} = 1 \neq 0$$

the series diverges by the Divergence Test.

b. We have that $\sum_{n=1}^{\infty} \frac{1}{3^n}$ is a geometric series with ratio $r = \frac{1}{3}$ and first term $a = \frac{1}{3}$, and $\sum_{n=1}^{\infty} \frac{2^n}{3^n}$ is a geometric series with ratio $r = \frac{2}{3}$ and first term $a = \frac{2}{3}$. Each of these geometric series converges by the geometric series test, and thus

$$\sum_{n=1}^{\infty} \frac{1+2^n}{3^n} = \sum_{n=1}^{\infty} \left(\frac{1}{3^n} + \frac{2^n}{3^n}\right) = \sum_{n=1}^{\infty} \frac{1}{3^n} + \sum_{n=1}^{\infty} \\ = \left(\frac{\frac{1}{3}}{1-\frac{1}{3}}\right) + \left(\frac{\frac{2}{3}}{1-\frac{2}{3}}\right) \\ = \frac{1}{2} + 2 = \boxed{\frac{5}{2}, \text{ convergent.}}$$

c. Since the limit

$$\lim_{k \to \infty} (\cos 1)^k$$

does not exist (and in particular, is not 0). So, by the Divergence Test, the series is divergent.

d. Recall that $\ln\left(\frac{n}{n+1}\right) = \ln(n) - \ln(n+1)$. Letting $s_k = \sum_{n=1}^k a_n$, we have

$$s_{1} = \ln 1 - \ln 2 = -\ln 2$$

$$s_{2} = \ln 1 - \ln 2 + \ln 2 - \ln 3 = -\ln 3$$

$$s_{3} = \ln 1 - \ln 2 + \ln 2 - \ln 3 + \ln 3 - \ln 4 = 1 - \ln 4$$

$$\vdots$$

$$s_{k} = -\ln k.$$

And since $s_k \to -\infty$ as $k \to \infty$, the series diverges.

5. a. We have that $a_n = \frac{n}{5^n}$ and $a_{n+1} = \frac{n+1}{5^{n+1}}$. Thus

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{n+1}{5^{n+1}} \cdot \frac{5^n}{n} \right|$$
$$= \lim_{n \to \infty} \left| \frac{1}{5} \cdot \frac{n+1}{n} \right| = \frac{1}{5}$$

By the ratio test, this series is absolutely convergent. **b.** We have that $a_n = \frac{(-10)^n}{n!}$ and $a_{n+1} = \frac{(-10)^{n+1}}{(n+1)!}$. Thus

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-10)^{n+1}}{(n+1)!} \cdot \frac{n}{(-10)^{n+1}} \right|$$

$$=\lim_{n\to\infty}\left|\frac{-10}{n+1}\right|=0.$$

 $(0)^{n}$

By the ratio test, this series is absolutely convergent.

- **c.** By the ratio test, this series is absolutely convergent.
- **d.** By the ratio test, this series is absolutely convergent.