1. We have that $y^{\prime}=-\frac{x}{\sqrt{2-x^{2}}}$, and so the radicand for our arc length integral is

$$
\begin{aligned}
1+\left(y^{\prime}\right)^{2} & =1+\frac{x^{2}}{2-x^{2}} \\
& =\frac{2-x^{2}}{2-x^{2}}+\frac{x^{2}}{2-x^{2}} \\
& =\frac{2}{2-x^{2}}
\end{aligned}
$$

Thus the length of the curve on the given interval is

$$
\begin{aligned}
L=\int_{0}^{1} \sqrt{\frac{2}{2-x^{2}}} d x & =\sqrt{2} \int_{0}^{1} \frac{1}{\sqrt{2-x^{2}}} d x \\
& =\sqrt{2}\left[\arcsin \left(\frac{x}{\sqrt{2}}\right)\right]_{0}^{1} \\
& =\sqrt{2} \cdot \frac{\pi}{4} \approx 1.11072
\end{aligned}
$$

2. We have that $y^{\prime}=9 x^{1 / 2}$, and so the radicand for our arc length integral is

$$
1+\left(y^{\prime}\right)^{2}=1+81 x
$$

Thus the length of the curve on the given interval is

$$
\begin{aligned}
L & =\int_{0}^{1} \sqrt{1+81 x} d x \\
& =\left[\frac{2}{243}(1+81 x)^{3 / 2}\right]_{0}^{1} \\
& =\frac{2 \cdot 82^{3 / 2}}{243}-\frac{2}{243} \approx 6.13022
\end{aligned}
$$

3. We have that $y^{\prime}=\tan x$, and so the radicand for our arc length intergral is

$$
1+\left(y^{\prime}\right)^{2}=1+\tan ^{2} x=\sec ^{2} x
$$

Thus the arc length of the curve on the given interval is

$$
\begin{aligned}
L & =\int_{0}^{\pi / 4} \sqrt{\sec ^{2} x} d x \\
& =\int_{0}^{\pi / 4} \sec x d x \\
& =[\ln |\sec x+\tan x|]_{0}^{\pi / 4} \\
& =\ln (1+\sqrt{2}) \approx 0.88137
\end{aligned}
$$

4. We have that $y^{\prime}=\frac{x}{2}-\frac{1}{2 x}$, so the radicand for our arc length integral is

$$
\begin{aligned}
1+\left(y^{\prime}\right)^{2} & =1+\left(\frac{x}{2}-\frac{1}{2 x}\right)^{2} \\
& =1+\frac{x^{2}}{4}-\frac{1}{2}+\frac{1}{4 x^{2}} \\
& =\frac{x^{2}}{4}+\frac{1}{2}+\frac{1}{4 x^{2}} \\
& =\left(\frac{x}{2}+\frac{1}{2 x}\right)^{2}
\end{aligned}
$$

Thus the length of the curve on the given interval is

$$
\begin{aligned}
L & =\int_{1}^{2} \sqrt{\left(\frac{x}{2}+\frac{1}{2 x}\right)^{2}} d x \\
& =\int_{1}^{2} \frac{x}{2}+\frac{1}{2 x} d x \\
& =\left[\frac{1}{4} x^{2}-\frac{1}{2} \ln x\right]_{1}^{2} \\
& =\frac{3}{4}+\frac{\ln 2}{2} \approx 1.09657
\end{aligned}
$$

5. Note: we have to convert all lengths given into feet. To compute the spring constant, we use Hooke's law:

$$
\begin{aligned}
f(x) & =k x \\
10 \mathrm{lb} & =k(4 \mathrm{in}) \\
10 \mathrm{lb} & =k\left(\frac{1}{3} \mathrm{ft}\right) \\
\Rightarrow \quad k & =30 \mathrm{lb} / \mathrm{ft} .
\end{aligned}
$$

Thus the amount of work required to stretch the string from its natural length to 6 in $=\frac{1}{2} \mathrm{ft}$ beyond its natural length is

$$
\begin{aligned}
W=\int_{0}^{1 / 2} f(x) d x & =\int_{0}^{1 / 2} 30 x d x \\
& =\left[15 x^{2}\right]_{0}^{1 / 2} \\
& =\frac{15}{4} \mathrm{ft}-\mathrm{lb}
\end{aligned}
$$

6. We assume that the chain has uniform density, so each meter of chain has a mass of 8 kg . When $y$ meters of the chain is lifted from the ground, the force of gravity is given by

$$
F(y)=m g=(9.8) 8 y=78.4 y
$$

The amount of work required to raise one end of the chain to 6 m is thus

$$
W=\int_{0}^{6} 78.4 y d y=\left[39.2 y^{2}\right]_{0}^{6}=1411.2 \mathrm{ft}-\mathrm{lb}
$$

7. We place the bottom of the tank at the origin. A vertical cross-sectional slice of the paraboloid is the parabola $y=x^{2} / 4$, and so at each height $y$, the slice of water is a circle of radius $\sqrt{4 y}$. Thus, the volume of each infinitesimal slice is $V(y)=4 \pi y d y$.
a. The work done in emptying the tank is

$$
\begin{aligned}
W & =\int_{0}^{4} \rho g(4-y) V(y) \\
& =4 \pi(62.5) \int_{0}^{4} 4 y-y^{2} d y \\
& =250 \pi\left[2 y^{2}-\frac{1}{3} y^{3}\right]_{0}^{4} \\
& =\frac{8000 \pi}{3} \approx 8377.6 \mathrm{ft}-\mathrm{lb}
\end{aligned}
$$

b. After $4000 \mathrm{ft}-\mathrm{lb}$ of work has been done, $h$ feet of water have been drained. This is

$$
\begin{aligned}
4000 & =250 \pi \int_{0}^{h} 4 y-y^{2} d y \\
& =-\frac{250}{3} \pi h^{2}(h-6)
\end{aligned}
$$

Solving for $h$, we get that $h \approx 1.93989 \mathrm{ft}$, so there is $4-h \approx 2.06011 \mathrm{ft}$ of water left in the tank.

