1. We use the disk method, and so integrate with respect to y. At each fixed y, our disk has radius $R=e^{y}$, and so the volume of this solid is given by

$$
\begin{aligned}
V & =\int_{1}^{2} \pi R^{2} d y \\
& =\pi \int_{1}^{2} e^{2 y} d y \\
& =\pi\left[\frac{1}{2} e^{2 y}\right]_{1}^{2} \\
& =\frac{\pi}{2}\left(e^{4}-e^{2}\right) \approx 74.15587
\end{aligned}
$$

2. We use the washer method, and so integrate with respect to x. The bounding curves intersect when $x=0$ and $x=1$. At each fixed x, our washer has inner radius $r=1-\sqrt{x}$ and outer radius $R=1-x$, and so the volume of this solid is given by

$$
\begin{aligned}
V & =\int_{0}^{1} \pi\left(R^{2}-r^{2}\right) d x \\
& =\pi \int_{0}^{1}(1-x)^{2}-(1-\sqrt{x})^{2} d x \\
& =\pi \int_{0}^{1}\left(x^{2}-3 x+2 \sqrt{x}\right) d x \\
& =\pi\left[\frac{1}{3} x^{3}-\frac{3}{2} x^{2}+\frac{4}{3} x^{3 / 2}\right]_{0}^{1} \\
& =\frac{\pi}{6} \approx 0.52360
\end{aligned}
$$

3. We use the disk method, and so integrate with respect to x. At each fixed x, the washer has radius $R=\frac{1}{x}$, and so the volume of this solid is

$$
\begin{aligned}
V & =\int_{1}^{2} \pi R^{2} d x \\
& =\pi \int_{1}^{2} \frac{1}{x^{2}} d x \\
& =\pi\left[-\frac{1}{x}\right]_{1}^{2} \\
& =\frac{\pi}{2} \approx 1.57080
\end{aligned}
$$

4. We can view this as a solid of revolution in the following way: Place the center of the base circle at the origin. The slanted edge of the frustum passes through the points $(R, 0)$ and (r, h), and so the line representing this edge is precisely $y=\left(\frac{h}{r-R}\right)(x-R)$. Since we'll be using the disk method, we integrate with respect to y. At each fixed y, the radius of this disk is $x=\left(\frac{r-R}{h}\right) y+R$, and so the volume of the solid is

$$
\begin{aligned}
V & =\int_{0}^{h} \pi x^{2} d y \\
& =\pi \int_{0}^{h}\left(\frac{r-R}{h} y+R\right)^{2} d y \\
& =\pi \int_{0}^{h}\left(\frac{r-R}{h}\right)^{2} y^{2}+2 \pi \frac{R(r-R)}{h} y+\pi R^{2} d y \\
& =\pi\left[\frac{1}{3}\left(\frac{r-R}{h}\right)^{2} y^{3}+\frac{R(r-R)}{h} y^{2}+R^{2} y\right]_{0}^{h} \\
& =\frac{1}{3} \pi h\left(r^{2}+r R+R^{2}\right)
\end{aligned}
$$

5. We use the shell method, and so integrate with respect to x. At each fixed x, the cylindrical shell has radius $r=x$ and height $h=x^{3}$, and so the volume of the solid is

$$
\begin{aligned}
V & =\int_{1}^{2} 2 \pi r h d x \\
& =2 \pi \int_{1}^{2} x \cdot x^{3} d x \\
& =2 \pi \int_{1}^{2} x^{4} d x \\
& =\pi\left[\frac{2}{5} x^{5}\right]_{1}^{2} \\
& =\frac{62}{5} \pi \approx 38.95575
\end{aligned}
$$

image here
6. We use the shell method, and so integrate with respect to y. The curve $y=x^{3}$ can be rewritten as the curve $x=y^{1 / 3}$. At each y, the cylindrical shell has radius $r=y$ and height $h=y^{1 / 3}$, and so the volume of the solid is

$$
\begin{aligned}
V & =\int_{0}^{8} 2 \pi r h d y \\
& =2 \pi \int_{0}^{8} y \cdot y^{1 / 3} d y \\
& =2 \pi \int_{0}^{8} y^{4 / 3} d y \\
& =\left[\frac{6 \pi}{7} y^{7 / 3}\right]_{0}^{8} \\
& =\frac{768 \pi}{7} \approx 344.67759
\end{aligned}
$$

image here
7. We use the shell method, and so integrate with respect to x. At each x, the cylindrical shell has radius $r=(2-x)$ and height $h=x^{4}$, and so the volume of the solid is

$$
\begin{aligned}
V & =\int_{0}^{1} 2 \pi r h d x \\
& =2 \pi \int_{0}^{1}(2-x) x^{4} d x \\
& =2 \pi \int_{0}^{1} 2 x^{4}-x^{5} d x \\
& =2 \pi\left[\frac{2}{5} x^{5}-\frac{1}{6} x^{6}\right]_{0}^{1} \\
& =\frac{7}{15} \pi \approx 1.46608
\end{aligned}
$$

image here
8. We use the shell method, and so integrate with respect to x. At each x, the cylindrical shell has radius $r=(x-1)$ and height $h=\left(4 x-x^{2}\right)-3$, and so the volume of the solid is

$$
\begin{aligned}
V & =\int_{1}^{3} 2 \pi r h d x \\
& =2 \pi \int_{1}^{3}(x-1)\left(4 x-x^{2}-3\right) d x \\
& =2 \pi \int_{1}^{3}-x^{3}+5 x^{2}-7 x+3 d x \\
& =2 \pi\left[-\frac{1}{2} x^{3}+\frac{5}{3} x^{3}-\frac{7}{2} x+3 x\right]_{1}^{3} \\
& =\frac{8}{3} \pi \approx 8.37758
\end{aligned}
$$

image here

