1. This is a Type I improper integral, and we write

$$
\int_{0}^{\infty} \sqrt[4]{1+x} d x=\lim _{b \rightarrow \infty} \int_{0}^{b} \sqrt[4]{1+x} d x
$$

We make a substitution

$$
\begin{aligned}
u & =1+x \\
d u & =d x
\end{aligned}
$$

and our limits of integration become

$$
\begin{aligned}
& u(0)=0+1=1 \\
& u(b)=b+1
\end{aligned}
$$

Since $\lim _{b \rightarrow \infty} b+1=\infty$, we can simply write the upper limit of integration as b without affecting the limit. Thus we get

$$
\begin{aligned}
\lim _{b \rightarrow \infty} \int_{0}^{b} \sqrt[4]{1+x} d x & =\lim _{b \rightarrow \infty} \int_{1}^{b+1} u^{1 / 4} d u \\
& =\lim _{b \rightarrow \infty}\left[\frac{4}{5} u^{5 / 4}\right]_{1}^{b+1} \\
& =\lim _{b \rightarrow \infty}\left[\frac{4}{5} b^{5 / 4}-\frac{4}{5}\right]
\end{aligned}
$$

The limit above does not exist, and so the integral is divergent.
2. This is a Type I improper integral, and we write

$$
\begin{aligned}
\int_{-\infty}^{\infty} \cos (\pi t) d t & =\lim _{a \rightarrow-\infty} \int_{a}^{0} \cos (\pi t) d t+\lim _{b \rightarrow \infty} \int_{0}^{b} \cos (\pi t) d t \\
& =\lim _{a \rightarrow-\infty}\left[\frac{1}{\pi} \sin (\pi t)\right]_{a}^{0}+\lim _{b \rightarrow \infty}\left[\frac{1}{\pi} \sin (\pi t)\right]_{0}^{b} \\
& =\lim _{a \rightarrow-\infty}-\frac{1}{\pi} \sin (\pi a)+\lim _{b \rightarrow \infty} \frac{1}{\pi} \sin (\pi b) .
\end{aligned}
$$

Since neither of these limits exist, then the integral is divergent.
3. $\int_{1}^{\infty} \frac{\ln x}{x} d x$

This is a Type I improper integral, and we write

$$
\int_{1}^{\infty} \frac{\ln x}{x} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{\ln x}{x} d x
$$

Using the substitution

$$
\begin{aligned}
u & =\ln x \\
d u & =\frac{1}{x} d x
\end{aligned}
$$

our limits of integration are

$$
\begin{aligned}
& u(1)=\ln (1)=0 \\
& u(b)=\ln (b)
\end{aligned}
$$

Because $\lim _{b} \ln (b) \rightarrow \infty$, we can simply write the upper limit of integration as b without affecting the limit. Thus we get

$$
\begin{aligned}
\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{\ln x}{x} d x & =\lim _{b \rightarrow \infty} \int_{0}^{b} u d u \\
& =\lim _{b \rightarrow \infty}\left[\frac{1}{2} u^{2}\right]_{0}^{b} \\
& =\lim _{b \rightarrow \infty} \frac{1}{2} u^{2}
\end{aligned}
$$

Since this limit does not exist, the integral is divergent.
4. We can apply the "p-test" (as discussed in class) to see that this integral converges. So, since this is a Type I integral, we write

$$
\begin{aligned}
\int_{1}^{\infty} \frac{3}{x^{5}} d x & =\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{3}{x^{5}} d x \\
& =\lim _{b \rightarrow \infty}\left[-\frac{3}{4 x^{4}}\right]_{1}^{b} \\
& =\lim _{b \rightarrow \infty}-\frac{3}{b^{4}}+\frac{3}{4} \\
& =\frac{3}{4}
\end{aligned}
$$

5. This is a Type II improper integral and the integrand is undefined at $w=2$, so we write

$$
\int_{0}^{5} \frac{w}{w-2} d w \lim _{b \rightarrow 2^{-}} \int_{0}^{b} \frac{w}{w-2} d w+\lim _{a \rightarrow 2^{+}} \int_{a}^{5} \frac{w}{w-2} d w
$$

To save some headache, we'll solve the indefinite integral by first making a substitution

$$
\begin{aligned}
u & =w-2 \\
d u & =d w
\end{aligned}
$$

which gets us

$$
\int \frac{w}{w-2} d w=\int \frac{u+2}{u} d u=\int 1+\frac{2}{u} d u=u+2 \ln |u|+C=w+2 \ln |w-2|+C
$$

Thus

$$
\begin{aligned}
& \lim _{b \rightarrow 2^{-}} \int_{0}^{b} \frac{w}{w-2} d w+\lim _{a \rightarrow 2^{+}} \int_{a}^{5} \frac{w}{w-2} d w \\
& =\lim _{b \rightarrow 2^{-}}[w+2 \ln |w-2|]_{0}^{b}+\lim _{a \rightarrow 2^{+}}[w+2 \ln |w-2|]_{a}^{5} \\
& =\lim _{b \rightarrow 2^{-}}(b+2 \ln |b-2|-2 \ln (2))+\lim _{a \rightarrow 2^{+}}(5+2 \ln (3)-a+\ln |a-2|)
\end{aligned}
$$

Since neither of these limits exist, then the integral is divergent.
6. After seeing the graph, we choose to partition the x-axis (hence integrating with respect to $x)$. The two curves intersect when $x=0$ and $x=4$, and get that the area between the curves is

$$
\begin{aligned}
A & =\int_{0}^{4}\left(5 x-x^{2}\right)-x d x \\
& =\int_{0}^{4} 4 x-x^{2} d x \\
& =\left[2 x^{2}-\frac{1}{3} x^{3}\right]_{0}^{4} \\
& =\frac{32}{3}
\end{aligned}
$$

7. After seeing the graph, we choose to partition the x-axis (hence integrating with respect to $x)$ and get that the area of the region is

$$
\begin{aligned}
A & =\int_{0}^{2} \sqrt{x+2}-\frac{1}{x+1} d x \\
& =\int_{0}^{2} \sqrt{x+2} d x-\int \frac{1}{x+1} d x \\
& =\left[\frac{2}{3}(x+2)^{3 / 2}\right]_{0}^{2}-[\ln |x+1|]_{0}^{2} \\
& =\frac{16}{3}-\frac{4 \sqrt{2}}{3}-\ln (3) \approx 2.3491
\end{aligned}
$$

8. After seeing the graph, we choose to partition the y-axis (hence integrating with respect to $y)$ and get that the area of the region is

$$
\begin{aligned}
A & =\int_{-1}^{1} e^{y}-\left(y^{2}-2\right) d y \\
& =\int_{-1}^{1} e^{y}-y^{2}+2 d y \\
& =\left[e^{y}-\frac{1}{3} y^{3}+2 y\right]_{-1}^{1} \\
& =\frac{10}{3}-e^{-1}+e \approx 5.6837
\end{aligned}
$$

MAT266 Homework 04 (Solutions)

9. After looking at the graph, we choose to partition the y-axis (hence integrating with respect to y). The curves intersect when $y=0$ and $y=3$, so the area of the region is. $x=y^{2}-4 y$, $x=2 y-y^{2}$

$$
\begin{aligned}
A & =\int_{0}^{3}\left(2 y-y^{2}\right)-\left(y^{2}-4 y\right) d y \\
& =\int_{0}^{3} 6 y-2 y^{2} d y \\
& =\left[3 y-\frac{2}{3} y^{3}\right]_{0}^{3} \\
& =9
\end{aligned}
$$

10. $y=\cos x, y=\sin (2 x), x=0, x=\frac{\pi}{2}$. Note that this region consists of two parts.

$$
\begin{aligned}
A & =\int_{0}^{\pi / 6} \cos x-\sin (2 x) d x+\int_{\pi / 6}^{\pi / 2} \sin (2 x)-\cos x d x \\
& =\left[\sin x+\frac{1}{2} \cos (2 x)\right]_{0}^{\pi / 6}+\left[-\frac{1}{2} \cos (2 x)-\sin x\right]_{\pi / 6}^{\pi / 2} \\
& =\frac{1}{2}
\end{aligned}
$$

