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5 Integrals

5.5 The Substitution Rule

Example 5.5.1 (Warm Up). Find
d

dx

[
(3x2 − 5)

8
]
.

Using the chain rule, we have

d

dx

[(
3x2 − 5

)8
]

= 8
(
3x2 − 5

)7 · 6x.

Recall that the chain rule says

d

dx
f(g(x)) = f ′(g(x)) · g′(x),

where g(x) is your “inner function” and f(x) is your “outer function”. Recall also that, if u = g(x) is
a differentiable function, then in the language of differentials, we have du = g′(x) dx.

The following rule combines these two concepts in a way that is exactly analogous to the chain rule
for differentiation.

Proposition 5.5.2 (Substitution Rule). If u = g(x) is a differentiable function whose range is an
interval I, and if f is continuous on I, then∫

f(g(x)) · g′(x) dx =

∫
f(u) du

Example 5.5.3. Using the substitution rule, evaluate

∫
8
(
3x2 − 5

)7 · 6x dx.

To apply the substitution rule, we first find g(x), our “inner function”.

u = g(x) = 3x2 − 5.

du = g′(x) dx = 6x dx.

Hence, by the substitution rule,∫
8
(
3x2 − 5

)7 · 6x dx =

∫
8u7 du

= u8 + C

=
(
3x2 − 5

)8
+ C (substitute back in for u).

Since the derivative of this function is exactly the original integrand, we indeed have the correct answer.
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Example 5.5.4. Using the substitution rule, evaluate

∫
e−2x dx.

To apply the substitution rule, we first find g(x), our “inner function”.

u = g(x) = −2x

du = g′(x) dx = −2 dx ⇒ −1

2
du = dx.

Hence, by the substitution rule,∫
e−2x dx =

∫
eu
(
−1

2

)
du

= −1

2

∫
eu du

= −1

2
eu + C

= −1

2
e−2x + C (substitute back in for u).

Since the derivative of this function is exactly the original integrand, we indeed have the correct answer.

Example 5.5.5. Using the substitution rule, evaluate

∫
(lnx)2

x
dx.

To apply the substitution rule, we first find g(x), our “inner function”.

u = g(x) = lnx

du = g′(x) dx =
1

x
dx.

Hence, by the substitution rule,∫
(lnx)2

x
dx =

∫
u2 du

=
1

3
u3 + C

=
1

3
(lnx)3 + C (substitute back in for u).

Since the derivative of this function is exactly the original integrand, we indeed have the correct answer.
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Example 5.5.6. Using the substitution rule, evaluate

∫
x3

√
x2 + 1

dx.

To apply the substitution rule, we first find g(x), our “inner function”.

u = g(x) = x2 + 1 (5.5.1)

du = g′(x) dx = 2x dx ⇒ 1

2
du = x dx

This gives us∫
x3

√
x2 + 1

dx =

∫
x2

√
u

(
1

2

)
du

But what do we do with the x2 term? Well notice that we can rearrange Equation 5.5.1 to get
x2 = u− 1, so

=
1

2

∫
u− 1√
u
du

=
1

2

∫ (
u1/2 − u−1/2

)
du

=
1

2

(
2

3
u3/2 − 2u1/2

)
+ C

=
1

3
u3/2 − u1/2 + C

=
1

3

(
x2 + 1

)3/2 −
(
x2 + 1

)1/2
+ C (substitute back in for u).

Since the derivative of this function is exactly the original integrand, we indeed have the correct answer.

Example 5.5.7. Using the substitution rule, evaluate

∫
tan(x) dx.

To apply the substitution rule, we first find g(x), our “inner function”. But where can this come from?

First we recall that tanx =
sinx

cosx
and let

u = g(x) = cos x

du = g′(x) dx = − sinx dx ⇒ −du = sinx dx

Hence, by the substitution rule,∫
tanx dx =

∫
sinx

cosx
dx

= −
∫
du

u

= − ln |u|+ C

= − ln | cosx|+ C (substitute back in for u).

Since the derivative of this function is exactly the original integrand, we indeed have the correct answer.
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Proposition 5.5.8 (Substituion Rule for Definite Integrals). If g′(x) is continuous on [a, b] and f is
continuous on the range of u = g(x), then∫ b

a

f(g(x)) · g′(x) dx =

∫ g(b)

g(a)

f(u) du

Proof. Let F be an antiderivative for f . Then F (g(x)) is an antiderivative of f(g(x)) · g′(x) by the
substitution rule. So, we have∫ b

a

f(g(x)) · g′(x) dx = F (g(x))|ba = F (g(b))− F (g(a))

and ∫ g(b)

g(a)

f(u) du = F (u)|g(b)g(a) = F (g(b))− F (g(a)),

whence the definite integrals must be equal.

Example 5.5.9. Evaluate

∫ 2

1

e1/x

x2
dx

Let

u = g(x) =
1

x

du = g′(x) dx = − 1

x2
dx ⇒ −du =

1

x2
dx.

Our new endpoints then become

u(1) = g(1) = 1

u(2) = g(2) =
1

2
.

Thus, applying the substitution rule, we have∫ x=2

x=1

e1/x

x2
dx =

∫ u=1/2

u=1

eu(−du)

= −
∫ 1/2

1

eu du

=

∫ 1

1/2

eu du

= eu|11/2
= e1 − e1/2 = e−

√
e.
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Example 5.5.10. Evaluate

∫ 1/2

0

arcsinx√
1− x2

dx

Let

u = arcsinx

du =
1√

1− x2
dx.

Our new endpoints then become

u(0) arcsin(0) = 0

u

(
1

2

)
= arcsin

(
1

2

)
=
π

6
.

Thus, applying the substitution rule, we have∫ 1/2

0

arcsinx√
1− x2

dx =

∫ π/6

0

u du

=
1

2
u2

∣∣∣∣π/6
0

=
1

2

(π
6

)2

− 1

2
(0)2 =

π2

72
.

Recall that a function f is even if f(−x) = f(x) odd if f(−x) = −f(x), where x is any real number
in the domain. The following result tells us about the symmetry of these functions as they relate to
definite integrals.

Example 5.5.11. One simple example of an even function is f(x) = |x|. Notice that, for some positive

real number a, the integral

∫ a

−a
f(x) dx is represented by the picture below.

a

−4

−2

2

4

Notice that the shaded regions to the left and right of the y-axis are equal, so the area under the curve
y = f(x) over the interval [−a, a] is double the area found over the interval [0, a]. In other words,∫ a

−a
|x| dx = 2

∫ a

0

|x| dx.
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Example 5.5.12. One simple example of an odd function is f(x) = x. Notice that, for some positive

real number a, the integral

∫ a

−a
f(x) dx is represented by the picture below.

a

−4

−2

2

4

Notice that the shaded regions to the left and right of the y-axis are equal, but have opposite sign
since area under a curve is “negative”. So the area under the curve y = f(x) over the interval [−a, 0]
is effectively cancels the area over the interval [0, a]. In other words,∫ a

−a
x dx = 0.

The same sort of symmetry applies in general to even and odd function.

Theorem 5.5.13. Suppose f is continuous on [−a, a]. Then

1. If f is even, then

∫ a

−a
f(x) dx =2

∫ a

0

f(x) dx.

2. If f is odd, then

∫ a

−a
f(x) dx =0.

Proof. First notice that∫ a

−a
f(x) dx =

∫ 0

−a
f(x) dx+

∫ a

0

f(x) dx = −
∫ −a

0

f(x) dx+

∫ a

0

f(x) dx (5.5.2)

For the first integral (with bounds 0 and −a), let

u = −x,
du = −dx.

Our new bounds are

u(0) = 0

u(−a) = −(−a) = a.
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Then

−
∫ −a

0

f(x) dx = −
∫ a

0

f(−u)(−du)

=

∫ a

0

f(−u) du

=

∫ a

0

f(−x) dx, (since u was a dummy variable)

so from Equation 5.5.2, we can write∫ a

−a
f(x) dx =

∫ a

0

f(−x) dx+

∫ a

0

f(x) dx (5.5.3)

1. If f is even, we have f(−x) = f(x), so Equation 5.5.3 yields∫ a

−a
f(x) dx =

∫ a

0

f(−x) dx+

∫ a

0

f(x) dx =

∫ a

0

f(x) dx+

∫ a

0

f(x) dx = 2

∫ a

0

f(x) dx.

2. If f is odd, we have f(−x) = −f(x), so Equation 5.5.3 yields∫ a

−a
f(x) dx =

∫ a

0

f(−x) dx+

∫ a

0

f(x) dx = −
∫ a

0

f(x) dx+

∫ a

0

f(x) dx = 0.

Example 5.5.14. Evaluate the integral

∫ 1

−1

xe−x
2

dx.

−1 −0.5 0.5 1

−1

−0.5

0.5

1

We could preform the substitution, but by first graphing the function with our graphing calculator,
we can appeal to the geometry and see that the function is odd. Hence∫ 1

−1

xe−x
2

dx = 0.
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6 Techniques of Integration

6.1 Integration by Parts

Example 6.1.1 (Warm up). Evaluate
d

dx
[xex].

Using the product rule, we have

d

dx
[xex] = ex + xex.

Recall that the product rule says

d

dx
[f(x)g(x)] = f ′(x)g(x) + f(x)g′(x).

In the language of differentials, letting u = f(x) and v = g(x) be differentiable functions, we have that
du = f ′(x) dx, dv = g′(x) dx, and

d(uv) = v du+ u dv ⇒ u dv = d(uv)− v du.

The following integration technique is then completely analogous to the product rule for derivatives.

Proposition 6.1.2 (Integration by Parts). Let u = f(x), v = g(x) be differentiable functions. Then∫
u dv = uv −

∫
v du. (6.1.1)

Remark. Unfortunately, we we typically use u for the substitution method and u, v for Integration
by Parts. It should be noted that these u’s are wholly unrelated as there is no function substitution
happening in Integration by Parts.

The procedure for applying Integration by Parts is as follows:

1. Choose u = f(x), dv = g′(x) dx so that g′(x) dx is easy to integrate by itself.

2. Find du = f ′(x) and v =
∫
g′(x) dx.

3. Substitute into Equation 6.1.1 and solve.

4. Apply steps 1-3 again if needed.

Example 6.1.3. Evaluate

∫
(ex + xex) dx.

We’ll first split this into two separate integrals and solve for the one we already know.∫
(ex + xex) dx =

∫
ex dx+

∫
xex dx = ex +

∫
xex dx.

We’ll apply Integration by Parts to solve the rightmost integral. Choose

u = x, du = dx

dv = ex dx, v = ex.
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Substituting into the Integration by Parts formula, we have∫
xex dx = xex −

∫
ex dx = xex − ex + C.

Thus the original integral becomes∫
(ex + xex) dx = ex + (xex − ex) + C = xex + C,

which is exactly what we would expect to get from Example 6.1.1.

Example 6.1.4. Evaluate

∫
x cosx dx.

First choose,

u = x, du = dx,

dv = cosx dx, v = sinx.

Then, substituting into the Integration by Parts formula, we have∫
x cosx dx = x sinx−

∫
sinx dx = x sinx+ cosx+ C.

What if we had chosen u and v differently in the previous example? Then we would have

u = cosx, du = − sinx dx,

dv = x dx, v =
1

2
x2,

and plugging into our Integration by Parts formula gives us∫
x cosx dx =

1

2
x2 cosx+

∫
1

2
x2 sinx dx,

and this rightmost integral is even harder to integrate than what we started with.

This suggests to us that, if using integration by parts and one of the functions in the integrand is a
polynomial, it might be easiest to choose u to be that polynomial.
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Example 6.1.5. Evaluate

∫
arctanx dx.

There aren’t a lot of choices for u and dv. Choose

u = arctanx, du =
1

1 + x2
dx,

dv = dx, v = x.

Substituting into the Integration by Parts formula, we have∫
arctanx dx = x arctanx−

∫
x

1 + x2
dx.

How do we evaluate this right-most integral? Use the substitution method. Let

w = 1 + x2

dw = 2x dx ⇒ 1

2
dw = x dx,

So then we have∫
arctanx dx = x arctanx−

∫
x

1 + x2
dx = x arctanx− 1

2

∫
dw

w

= x arctanx− 1

2
ln |w|+ C

= x arctanx− 1

2
ln
(
1 + x2

)
+ C.

In some cases, it may be necessary to use integration by parts multiple times.

Example 6.1.6. Evaluate

∫
x2ex dx.

Choose

u = x2, du = 2x dx,

dv = ex dx, v = ex.

Substituting into the Integration by Parts formula, we have∫
x2ex dx = x2ex −

∫
2xex dx = x2ex − 2

∫
xex dx.

We repeat the process for the right-most integral. Choose

ũ = x, dũ = dx,

dṽ = ex dx, ṽ = ex.

Substituting into our Integration by Parts formula, we have∫
x2ex dx = x2ex − 2

∫
xex dx = x2ex − 2

(
xex −

∫
ex dx

)
= x2ex − 2 (xex − ex) + C

= x2ex − 2xex + 2ex + C.
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When integrating by parts involving a natural logarithm, it’s almost always best to let u be the natural
logarithm.

Example 6.1.7. Evaluate

∫
x4 lnx dx.

Since we don’t know
∫

lnx dx, choose

u = lnx, du =
1

x
dx,

dv = x4 dx, v =
1

5
x5.

Substituting into the Integration by Parts formula, we have∫
x4 lnx dx =

1

5
x5 lnx−

∫
1

5
x4 dx

=
1

5
x5 lnx− 1

25
x5 + C.

Sometimes you may encounter a situation where you have to repeat the integration by parts and end
up with the original integral.

Example 6.1.8. Evaluate

∫
ex sinx dx.

Choose

u = sinx, du = cosx dx,

dv = ex dx, v = ex.

Substituting into the Integration by Parts formula, we have∫
ex sinx dx = ex sinx−

∫
ex cosx dx.

Now choose

ũ = cosx, dũ = − sinx,

dṽ = ex dx, ṽ = ex.

Again, substituting into the Integration by Parts formula gives us∫
ex cosx dx = ex cosx+

∫
ex sinx dx.

Putting this all together, we have∫
ex sinx dx = ex sinx−

[
ex cosx+

∫
ex sinx dx

]
= ex sinx− ex cosx−

∫
ex sinx dx

⇒ 2

∫
ex sinx dx = ex sinx− ex cosx+ C

⇒
∫
ex sinx dx =

1

2
(ex sinx− ex cosx) + C.
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Proposition 6.1.9 (Integration by Parts for Definite Integrals). Let u = f(x), v = g(x) be differen-
tiable functions and suppose f ′(x) and g′(x) are continuous on the interval [a, b]. Then∫ b

a

u dv = uv|ba −
∫ b

a

v du. (6.1.2)

Example 6.1.10. Evaluate

∫ π/2

0

x sinx dx.

Choose

u = x, du = dx,

dv = sinx dx v = − cosx.

Then substituting into Equation 6.1.2, we have∫ π/2

0

x sinx dx = −x cosx|π/20 −
∫ π/2

0

− cosx dx

=

∫ π/2

0

cosx dx

= sinx|π/20 = sin
(π

2

)
− sin(0) = 1.

Sometimes we need to use substitution first, and then integration by parts.

Example 6.1.11. Evaluate

∫ √π
0

t3 cos
(
t2
)
dt.

For substitution, choose

x = t2

dx = 2t dt ⇒ 1

2
dx = t dt.

and our limits become

x(0) = 0

x(
√
π) = π,

Then ∫ √π
0

t3 cos
(
t2
)
dt =

∫ √π
0

t2 cos
(
t2
)
· t dt

=
1

2

∫ π

0

x cosx dx

and this is the same integral from Example 6.1.4, so we get

=
1

2
(x sinx+ cosx)|π0 =

1

2
(cos(π)− cos(0)) = −1.
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Example 6.1.12. Evaluate

∫ 2

1

ln(6x+ 2) dx.

Choose

u = ln(6x+ 2), du =
6

6x+ 2
dx,

dv = dx, v = x.

Then, substituting into our Integration by Parts formula, we have∫ 2

1

ln(6x+ 2) dx = x ln(6x+ 2)|21 −
∫ 2

1

6x

6x+ 2
dx

= 2 ln(14)− ln(8)−
∫ 2

1

6x

6x+ 2
dx.

To solve this remaining integral, we’ll need to use substitution, so choose

w = 6x+ 2, ⇒ 6x = w − 2

dw = 6 dx ⇒ 1

6
dw = dx,

and it follows that our new limits are

w(1) = 6(1) + 2 = 8,

w(2) = 6(2) + 2 = 14.

So, using substitution,∫ 2

1

ln(6x+ 2) dx = 2 ln(14)− ln(8)−
∫ 2

1

6x

6x+ 2
dx.

= 2 ln(14)− ln(8)−
∫ 14

8

w − 2

w

(
1

6
dw

)
= 2 ln(14)− ln(8)− 1

6

∫ 14

8

(
1− 2

w

)
dw

= 2 ln(14)− ln(8)− 1

6
(w − 2 lnw)|14

8

= 2 ln(14)− ln(8)− 1

6
(14− 2 ln(14)− 8 + 2 ln(8))

=
7

3
ln(14)− 4

3
ln(8)− 1.
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6.2 Trigonometric Integrals and Substitutions

6.2.1 Trigonometric Integrals

Before we begin this section, we’ll recall the following useful trigonometric identities: The Pythagorean
Identities

sin2 θ + cos2 θ = 1,

1 + cot2 θ = csc2 θ,

tan2 θ + 1 = sec2 θ,

and the Power-Reducing Formulae

sin2 θ =
1− cos(2θ)

2
,

cos2 θ =
1 + cos(2θ)

2
.

We will also state the following as fact (the proofs of which are clever and can be found in the book).∫
tanx dx = ln | secx|+ C,

∫
secx dx = ln | secx+ tanx|+ C.

Example 6.2.1. Evaluate

∫
sin3 x dx.

We can’t apply the substitution rule to this integral as there is no cosine term, and it’s not completely
obvious how we might integrate this by parts (if it is even possible), so instead we’ll use one of the
Pythagorean identities above to rewrite the integral.∫

sin3 x dx =

∫
sin2 x · sinx dx =

∫
(1− cos2 x) sinx dx.

Now we see we can apply the substitution rule by choosing

u = cosx

du = − sinx dx,

whence ∫
sin3 x dx =

∫
(1− cos2 x) sinx dx

= −
∫

(1− u2) du

= −u+
1

3
u3 + C

= − cosx+
1

3
cos3 x+ C

16



Example 6.2.2. Evaluate

∫
cos2 x dx.

Using the Pythagorean identity here doesn’t simplify anything, so we’ll instead use one of the power
reducing formulae:∫

cos2 x dx =

∫
1 + cos(2x)

2
dx

=
1

2

∫
1 + cos(2x) dx

=
1

2

(
x+

1

2
sin(2x)

)
+ C (For the cos(2x) part use a substitution u = 2x)

=
1

2
x+

1

4
sin(2x) + C

General strategy for handling integrals of the form

∫
sinm x cosn x dx:

(i) If m is odd, save one sin x factor and use sin2 x = 1− cos2 x to express the remaining factors in
terms of cosx. Then use substitution with u = cosx.

(ii) If n is odd, save one cos x factor and use cos2 x = 1− sin2 x to express the remaining factors in
terms of sinx. Then use substitution with u = sinx.

(iii) If m and n are both even, use a power-reducing formula and proceed with either (i) or (ii).

Example 6.2.3. Evaluate

∫
sin3(5x) cos2(5x) dx.

We use the Pythagorean identity sin2(5x) = 1−cos2(5x), and then apply the substitution u = cos(5x),
du = −5 sin(5x) dx. ∫

sin3(5x) cos2(5x) dx =

∫
sin(5x)

(
1− cos2(5x)

)
cos2(5x) dx

= −1

5

∫
(1− u2)u2 du

= −1

5

∫
u2 − u4 du

= − 1

15
u3 +

1

25
u5 + C

= − 1

15
cos3(5x) +

1

25
cos5(5x) + C.

17



Example 6.2.4. Evaluate

∫
sin4 x dx.

Noting that sin4 x = (sin2 x)2, we can apply a power-reducing formula.∫
sin4 x dx =

∫
(sin2 x)2 dx =

∫ (
1− cos(2x)

2

)2

dx

=
1

4

∫
1− 2 cos(2x) + cos2(2x) dx

=
1

4

∫
1− 2 cos(2x) +

(
1 + cos(4x)

2

)
dx (power-reducing formula)

=
1

4

∫
1− 2 cos(2x) +

1

2
+

1

2
cos(4x) dx

=
1

4

∫
3

2
− 2 cos(2x) +

1

2
cos(4x) dx

=
1

4

[
3

2
x− sin(2x) +

1

8
sin(4x)

]
+ C

=
3

8
x− 1

4
sin(2x) +

1

32
sin(4x) + C

General strategy for handling integrals of the form

∫
secm x tann x dx:

(i) If m is even, save one sec2 x factor and use sec2 x = tan2 x + 1 to express the remaining factors
in terms of tanx. Then use substitution with u = tanx.

(ii) If m and n are both odd, save one tanx factor and use tan2 x = sec2 x−1 to express the remaining
factors in terms of sec x. Then use substitution with u = secx.

(iii) If m is odd and n is even, turn and run, or get creative with integration by parts.

Example 6.2.5. Evaluate

∫
sec4 x tan2 x dx.

We use the Pythagorean identity sec2 x = 1 + tan2 x and then apply the substitution u = tanx,
du = sec2 x dx. ∫

sec4 x tan2 x dx =

∫
sec2 x(1 + tan2 x) tan2 x dx

=

∫
(1 + u2)u2 du

=

∫
u2 + u4 du

=
1

3
u3 +

1

5
u5 + C

=
1

3
tan3 x+

1

5
tan5 x+ C.
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Example 6.2.6. Evaluate

∫
sec9 x tan5 x dx.

We use Pythagorean identity tan2 x = sec2 x − 1 and then apply the substitution u = secx, du =
secx tanx dx. ∫

sec9 x tan5 x dx =

∫
sec9 x tanx(tan4 x) dx

=

∫
sec9 x tanx(tan4 x) dx

=

∫
sec9 x tanx(tan2 x)2 dx

=

∫
sec9 x tanx(sec2 x− 1)2 dx

=

∫
u8(u2 − 1)2 du

=

∫
u8(u4 − 2u2 + 1) du

=

∫
u12 − 2u10 + u8 du

=
1

13
u13 − 2

11
u11 +

1

9
u9 + C

=
1

13
sec13 x− 2

11
sec11 x+

1

9
sec9 x+ C.

Example 6.2.7. Evaluate

∫
sec3 x dx.

We integrate by parts with

u = secx, du = secx tanx,

dv = sec2 x dx, v = tanx.

So ∫
sec3 x dx = secx tanx−

∫
tan2 x secx dx

= secx tanx−
∫

(sec2x− 1) secx dx

= secx tanx−
∫

sec3 x dx+

∫
secx dx

= secx tanx− ln | secx+ tanx|+
∫

sec3 x dx

2

∫
sec3 x dx = secx tanx− ln | secx+ tanx|+ C

⇒
∫

sec3 x dx =
1

2
secx tanx− 1

2
ln | secx+ tanx|+ C.
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6.2.2 Trigonometric Substitutions

Suppose we’re asked to integrate something of the form
√
a2 − x2, where a is some constant real

number. None of our techniques so far can be applied directly to this. However, we can think about
a, x, and

√
a2 − x2 as sitting on a right triangle as follows:

√
a2 − x2

xa

θ

Thinking about it this way, we have that sin θ = x
a
, or rather that x = a sin θ. Using this substitution,

we can rewrite the expression

√
a2 − x2 =

√
a2 − a2 sin2 θ =

√
a2 cos2 θ = a cos θ (since 0 < θ < π

2
)

which is something we do know how to integrate. This same procedure gives us a way to handle
expressions

√
x2 + a2 and

√
x2 − a2 as well.

Expression

√
a2 − x2

Substitution

x = a sin θ

dx = a cos θ dθ

Trig Identity

1− sin2 θ = cos2 θ

Reference Triangle

√
a2−x2

x
a

θ

Expression

√
a2 + x2

Substitution

x = a tan θ

dx = a sec2 θ dθ

Trig Identity

tan2 θ + 1 = sec2 θ

Reference Triangle

a

x
√ a

2 +x
2

θ

Expression

√
x2 − a2

Substitution

x = a sec θ

dx = a sec θ tan θ dθ

Trig Identity

sec2 θ − 1 = tan2 θ

Reference Triangle

a

√
x2−a2

x

θ

Table 6.2.1: Trigonometric Substitutions
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Example 6.2.8. Perform a trigonometric substitution for the integral

∫
dt

t2
√
t2 − 16

. Evaluate.

From Table 6.2.1, we use the substitution

t = 4 sec θ

dt = 4 sec θ tan θ dθ

which yields ∫
dt

t2
√
t2 − 16

=

∫
4 sec θ tan θ

16 sec2 θ
√

16 sec2 θ − 16
dθ

=

∫
4 sec θ tan θ

16 sec2 θ
√

16 tan2 θ
dθ

=
1

16

∫
dθ

sec θ

=
1

16

∫
cos θ dθ

=
1

16
sin θ + C.

Now, we still need to get our answer back in terms of t. To do this, we fill out the relevant reference
triangle

4

√
t2−162

t

θ

And from this triangle, we see that sin θ =

√
t2 − 16

t
, hence∫

dt

t2
√
t2 − 16

=
1

16

√
t2 − 16

t
+ C.

Example 6.2.9. Perform a trigonometric substitution for the integral

∫
x3
√

1− x2 dx. Do not eval-

uate.

From Table 6.2.1, we use the substitution

x = sin θ

dx = cos θ dθ

which yields ∫
x3
√

1− x2 dx =

∫
sin3 θ

√
1− sin2θ (cos θ) dθ

=

∫
sin3 θ

√
cos2 θ (cos θ) dθ

=

∫
sin3 θ cos2 θ dθ.
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Example 6.2.10. Perform a trigonometric substitution for the integral

∫
t5√
t2 + 2

dt. Do not evaluate.

From Table 6.2.1, we use the substitution

t =
√

2 tan θ

dt =
√

2 sec2 θ dθ

which yields ∫
t5√
t2 + 2

dt =

∫
(
√

2 tan θ)5

√
2 tan2 θ + 2

(√
2 sec2 θ

)
dθ

=

∫
8 tan5 θ sec2 θ√

2 sec θ
dθ

= 4
√

2

∫
tan5 θ sec θ dθ.
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6.3 Partial Fractions

Example 6.3.1 (Warm Up). Rewrite
4

9(x+ 4)
+

1

9(2x− 1)
as a single fraction.

To write as a single fraction, we note that the common denominator will be 9(x+ 4)(2x− 1).

4

9(x+ 4)
+

1

9(2x− 1)
=

4(2x− 1)

9(x+ 4)(2x− 1)
+

(x+ 4)

9(x+ 4)(2x− 1)

=
4(2x+ 1) + (x+ 4)

9(x+ 4)(2x− 1)

=
x

(x+ 4)(2x− 1)

For this integration technique, we’ll be going backwards and “uncommonizing” the denominator.

General Strategy for a Partial Fraction Decomposition:

Start with a function f(x) =
p(x)

q(x)
where p(x) and q(x) are polynomials.

1. If deg p(x) ≥ deg q(x), we perform polynomial long division to get f(x) = s(x) +
r(x)

q(x)
, where

s(x) and r(x) are polynomials, and deg r(x) < deg q(x).

2. Factor q(x) into a product of linear factors (ax+b) and irreducible quadratic factors (ax2+bx+c).
(You can always do this. Also note that ax2 + bx+ c is irreducible if b2 − 4ac < 0.)

3. Rewrite
r(x)

q(x)
as a sum of partial fractions of the form

A

ax+ b
or

Ax+B

ax2 + bx+ c
, where A and B

are constants.

4. Solve for the unknown constants in the numerators of your partial fractions.

We’ll look at this in cases.

Case I. q(x) factors as a product of distinct linear factors, say

q(x) = (a1x+ b1)(a2x+ b2) · · · (anx+ bn).

We then have

r(x)

q(x)
=

A1

a1x+ b1

+
A2

a2x+ b2

+ · · ·+ An
anx+ bn

.
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Example 6.3.2. Find a partial fraction decomposition of
x

(x+ 4)(2x− 1)
.

Since the degree of the numerator is smaller than the degree of the denominator, and the denominator
is already factored, we can skip steps 1 and 2 above. Thus we have

x

(x+ 4)(2x− 1)
=

A

x+ 4
+

B

2x− 1
.

To solve for A and B, we can clear the denominators by multiplying both sides of the equation by
(x+ 4)(2x− 1), leaving us with

x = A(2x− 1) +B(x+ 4) = 2Ax− A+Bx+ 4B = (2A+B)x+ (−A+ 4B).

Two polynomials are equal precisely when their coefficients are equal, so we deduce that

2A+B = 1,

−A+ 4B = 0.

And using our favorite method for solving systems of linear equations, we have A = 4
9

and B = 1
9
. So

x

(x+ 4)(2x− 1)
=

4

9(x+ 4)
+

1

9(2x− 1)
,

which is exactly what we expected to get given Example 6.3.1.

Example 6.3.3. Use partial fractions to evaluate

∫
5x+ 1

(2x+ 1)(x− 1)
dx.

Again we can skip steps 1 and 2 in our partial fraction decomposition, so we get

5x+ 1

(2x+ 1)(x− 1)
=

A

2x+ 1
+

B

x− 1
,

and clearing denominators yields

5x+ 1 = A(x− 1) +B(2x+ 1) = Ax− A+ 2Bx+B = (A+ 2B)x+ (−A+B).

so we deduce that

A+ 2B = 5,

−A+B = 1,

and solving our system, we get that A = 1, B = 2. So, we can simplify our integral and apply the
substitution rule to get∫

5x+ 1

(2x+ 1)(x− 1)
dx =

∫ (
1

2x+ 1
+

2

x− 1

)
dx

=
1

2
ln |2x+ 1|+ 2 ln |x− 1|+ C.
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Case II. q(x) factors as a product of repeated linear factors, say

q(x) = (a1x+ b1)(a2x+ b2)k.

We then have to have an exponent for every power of the repeated factor from 1 to k, so

r(x)

q(x)
=

A1

a1x+ b1

+
B1

(a2x+ b2)
+

B2

(a2x+ b2)2
+ · · ·+ Bk

(a2x+ b2)k
.

Example 6.3.4. Use partial fractions to evaluate

∫
2x+ 3

(x+ 1)2
dx.

Again we can skip steps 1 and 2 in our partial fraction decomposition, so we get

2x+ 3

(x+ 1)2
=

A

x+ 1
+

B

(x+ 1)2
,

and clearing denominators yields

2x+ 3 = A(x+ 1) +B = Ax+ (A+B).

This gives us the system

A = 2,

A+B = 3,

which has solutions A = 2, B = 1. So we can simplify our integral and apply the substitution rule to
get ∫

2x+ 3

(x+ 1)2
dx =

∫ (
2

x+ 1
+

1

(x+ 1)2

)
dx

= 2 ln |x+ 1| − 1

x+ 1
+ C.

Case III. q(x) factors as a product of distinct irreducible quadratic factors, say

q(x) = (a1x
2 + b1x+ c1) · · · (anx2 + bnx+ cn).

We then have to have an exponent for every power of the repeated factor from 1 to k, so

r(x)

q(x)
=

A1x+B1

a1x2 + b1x+ c1

+ · · ·+ Anx+Bn

(anx2 + bnx+ cn)
.
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Example 6.3.5. Use partial fractions to evaluate

∫
x3 − 2x2 + x+ 1

x4 + 5x2 + 4
dx.

Skipping steps 1 and 2, we note that the denominator factors as (x2 + 1) (x2 + 1), both of which are
irreducible quadratics. We then get

x3 − 2x2 + x+ 1

x4 + 5x2 + 4
=
x3 − 2x2 + x+ 1

(x2 + 4) (x2 + 1)
=
Ax+B

x2 + 4
+
Cx+D

x2 + 1
,

and clearing denominators gives us

x3 − 2x2 + x+ 1 = (Ax+B)(x2 + 1) + (Cx+D)(x2 + 4)

= (A+ C)x3 + (B +D)x2 + (A+ 4C)x+ (B + 4D),

resulting in the following system of equations

A+ C = 1,

B +D = −2,

A+ 4C = 1,

B + 4D = 1.

The solutions are A = 1, B = −3, C = 0, D = 1. So, by simplifying our integral and applying a
substitution rule, we get∫

x3 − 2x2 + x+ 1

x4 + 5x2 + 4
dx =

∫ (
x− 3

x2 + 4
+

1

x2 + 1

)
dx

=

∫ (
x

x2 + 4
− 3

x2 + 4
+

1

x2 + 1

)
dx

=
1

2
ln |x2 + 4| − 3

2
arctan

(x
2

)
+ arctan(x) + C.

Case IV. q(x) factors as product of repeated irreducible quadratic factors, say

q(x) = (a1x
2 + b1x+ c1)(a2x

2 + b2x+ c2)k.

We then have to have an exponent for every power of the repeated factor from 1 to k, so

r(x)

q(x)
=

A1x+B1

a1x2 + b1x+ c1

+
A2x+B2

(a2x2 + b2x+ c2)
+

A3x+B3

(a2x2 + b2x+ c2)2
+ · · ·+ Ak+1x+Bk+1

(a2x2 + b2x+ c2)k
.
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Example 6.3.6. Use partial fractions to evaluate

∫
x4 + 1

x(x2 + 1)2
dx.

Since the degree of the denominator is larger than that of the denominator, we again get to skip steps
1 and 2. We note also that x2 + 1 is an irreducible quadratic. We then get

x4 + 1

x(x2 + 1)2
=
A

x
+
Bx+ C

x2 + 1
+

Dx+ E

(x2 + 1)2
,

and clearing denominators yields

x4 + 1 = A(x2 + 1)2 + (Bx+ C)x(x2 + 1) + (Dx+ E)x

= (A+B)x4 + Cx3 + (2A+B +D)x2 + (C + E)x+ A.

This results in the following system of equations

A+B = 1,

C = 0,

2A+B +D = 0,

C + E = 0,

A = 1,

which has solutions A = 1, B = 0, C = 0, D = −2, E = 0. With this partial fraction decomposition
and applying the substitution rule, we get∫

x4 + 1

x(x2 + 1)2
dx =

∫ (
1

x
− 2x

(x2 + 1)2

)
dx

= ln |x|+ 1

x2 + 1
+ C.
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6.3.1 Using a Matrix to Solve Systems of Linear Equations

In the process of performing a partial fraction decomposition, you may end up having to solve for
quite a few unknowns, say

3x4 + 5x2 + 17x− 9 = (A+ 2B − 3C)x4 + (2A+D)x3 + (B − 9C + E)x2+

= + (−A−B − C −D − E)x+ (A+ C − 19E).

By equating coefficients of the polynomial, we get the following system:

A +2B −3C +0D +0E = 3
2A +0B +0C +D +0E = 0
0A +B −9C +0D +E = 5
−A −B −C −D −E = 6
A +0B +C +0D −7E = −9

This system may be a nightmare to solve, but by dropping the letters and the equals sign, we can
rewrite this as an augmented matrix where the left columns correspond to the coefficients of A, B, C,
D, E (in order), and the right column is the answer column, like so

M =


1 2 3 0 0 3
2 0 0 1 0 0
0 1 −9 0 1 5
−1 −1 −1 −1 −1 6
1 0 1 0 −7 −9


By then putting this matrix into reduced row echelon form using the rref command, we get

rref(M) =


1 0 0 0 0 257

39

0 1 0 0 0 −17
15

0 0 1 0 0 −86
195

0 0 0 1 0 −514
39

0 0 0 0 1 422
195


In this form, we’re able to just read off the coefficients in order:

A = 257
39
, B = −17

15
, C = −86

195
, D = −514

39
, E = 422

195
.
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6.4 Integration with Tables and Computer Algebra Systems

Integration can be very hard, but thankfully many integrals, with only a little bit of algebraic manip-
ulation, can be put into a form for which we have known solutions.

Example 6.4.1. Use formula #20 on the table of integrals,

∫
du

u2 − a2
=

1

2a
ln

∣∣∣∣u− au+ a

∣∣∣∣+ C, to evaluate

the indefinite integral

∫
cosx

sin2 x− 9
dx.

We recognize that u = sinx, du = cosx dx, and a = 3. Then∫
cosx

sin2 x− 9
dx =

1

6
ln

∣∣∣∣sinx− 3

sinx+ 3

∣∣∣∣+ C.

Of course, half of the challenge of doing this is recognizing the form for the integral to figure out which
table formula to use.

Example 6.4.2. Evaluate

∫ √
2y2 − 3

y2
dy using a table of integrals.

Looking at the table of integrals, we see that #42,

∫ √
u2 − a2

u2
du = −

√
u2 − a2

u
+ ln

∣∣∣u+
√
u2 − a2

∣∣∣+ C

looks promising. Let u =
√

2y, du =
√

2 dy, and a =
√

3. Then∫ √
2y2 − 3

y2
dy =

∫
2
√

2y2 − 3

2y2
dy

=

∫
2
√
u2 − a2

u2
· 1√

2
du

=
√

2

∫ √
u2 − a2

u2
du

=
√

2

(
−
√
u2 − a2

u
+ ln

∣∣∣u+
√
u2 − a2

∣∣∣)+ C

=
√

2

(
−
√

2y2 − 3√
2y

+ ln
∣∣∣√2y +

√
2y2 − 3

∣∣∣)+ C

= −
√

2y2 − 3

y
+
√

2 ln
∣∣∣√2y +

√
2y2 − 3

∣∣∣+ C.

Sometimes, the form may require additional algebraic techniques before applying a substitution.
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Example 6.4.3. Evaluate

∫
x
√
x2 + 2x+ 5 dx.

Every integral looks like it needs to be of the form
√
u2 + a2,

√
u2 − a2, or

√
a2 − u2. So, we need to

complete the square.

x2 + 2x+ 5 = x2 + 2x+ 1 + 5− 1 = (x+ 1)2 + 4

So, with u = x+ 1, du = dx, and a = 2, we have∫
x
√
x2 + 2x+ 5 dx =

∫
(u− 1)

√
u2 + a2 du

=

∫
u
√
u2 + a2 du−

∫ √
u2 + a2 du

The left-hand integral can be approached with the substitution t = u2 + a2 and dt = 2u du,∫
u
√
u2 + a2 du =

∫
1

2

√
t dt =

1

3
t3/2 + C =

1

2
(u2 + a2)3/2 + C,

and the right-hand integral can be approached with equation #21,∫ √
u2 + a2 du =

u

2

√
u2 + a2 +

a2

2
ln
(
u+
√
u2 + a2

)
+ C.

Putting it all together, we get∫
u
√
u2 + a2 du−

∫ √
u2 + a2 du

=
1

2
(u2 + a2)3/2 − u

2

√
u2 + a2 − a2

2
ln
(
u+
√
u2 + a2

)
+ C

=
1

2
(x2 + 2x+ 5)3/2 − x+ 1

2

√
x2 + 2x+ 5− 2 ln

(
x+ 1 +

√
x2 + 2x+ 5

)
+ C.

There are several CAS (computer algebraic systems) that can perform algebraic integration and you,
as a student, likely have free acces to at least one of them: Mathematica, Maple, Sage, etc. These
must be approached with caution, for there are some idiosyncracies of which you should be aware. For
example, asking Mathematica (or the free online WolframAlpha) to find

∫
x
√
x2 + 2x+ 5 dx, we get∫

x
√
x2 + 2x+ 5 dx =

1

6

√
x2 + 2x+ 5

(
2x2 + x+ 7

)
− 2 sinh−1

(
x+ 1

2

)
+ C.

While correct, this isn’t a particularly useful form, because hyperbolic trigonometric functions (espe-
cially their inverses like sinh−1) are quite uncommon in practice. This solution ends up being equivalent
to ours via the identity sinh−1 x = ln(x+

√
x2 + 1), which is arguably in a much nicer form.

As well, it’s not uncommon for CAS to return integrals without the +C (they return just a particular
antiderivative), or to forget the absolute value signs in the logarithms.
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6.5 Approximate Integration

Back in Chapter 5, we saw ways to approximate indefinite integrals using left, right, and middle
Riemann sums. In this section, we’ll see two new ways to approximate the area under a curve in ways
that are equally about as easy to implement.

Example 6.5.1. Using left Riemann sums, approximate

∫ 2

0

x

1 + x2
dx with four rectangles.

1
2

1 3
2

2

0.2

0.4

0.6

Recall that the left Riemann sum L4 is given by the formula

L4 =
4∑
i=1

f(xi−1)∆x =
4∑
i=1

f(xi−1)

(
2− 0

4

)
= f(0)(0.5) + f(0.5)(0.5) + f(1)(0.5) + f(1.5)(0.5)

= 0(0.5) + (0.4)(0.5) + (0.5)(0.5) + (0.461538)(0.5)

= 0.680769.

Example 6.5.2. Using right Riemann sums, approximate

∫ 2

0

x

1 + x2
dx with four rectangles.

1
2

1 3
2

2

0.2

0.4

0.6

Recall that the right Riemann sum R4 is given by the formula

L4 =
4∑
i=1

f(xi)∆x =
4∑
i=1

f(xi)

(
2− 0

4

)
= f(0.5)(0.5) + f(1)(0.5) + f(0.5)(0.5) + f(2)(0.5)

= (0.4)(0.5) + (0.5)(0.5) + (0.461538)(0.5) + (0.4)(0.5)

= 0.880769.
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Example 6.5.3. Using middle Riemann sums (aka, the midpoint rule), approximate

∫ 2

0

x

1 + x2
dx

with four rectangles.

1
2

1 3
2

2

0.2

0.4

0.6

Recall that the middle Riemann sum M4 is given by the formula

M4 =
4∑
i=1

f

(
xi + xi−1

2

)
∆x =

4∑
i=1

f

(
xi + xi−1

2

)(
2− 0

4

)
= f(0.25)(0.5) + f(0.75)(0.5) + f(1.25)(0.5) + f(1.75)(0.5)

= (0.235294)(0.5) + (0.48)(0.5) + (0.487805)(0.5) + (0.430769)(0.5)

= 0.816934.

This whole time we’ve been approximating with rectangles, but that’s only because it’s a convenient
shape for which we already know the area. In a similar vain, we can approximate with trapezoids as
well:

xi xi+1

0.5

1

b

h1

h2

The area of a trapezoid with base b and heights h1, h2 is given by A = 1
2
(h1 + h2)b. In terms of our

function, the area is given by 1
2
(f(xi) + f(xi+1))∆x. If we sum over a n trapezoidal areas of this form,

we get an approximation for the area under the curve on the interval [a, b]. This gives us

Proposition 6.5.4 (Trapezoid Rule).∫ b

a

f(x) ≈ Tn=
1

2
(f(x0) + f(x1)) ∆x+

1

2
(f(x1) + f(x2)) ∆x+ · · ·+ 1

2
(f(xn−1) + f(xn)) ∆x

=
1

2
∆x

[
f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + f(xn)

]
.
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Example 6.5.5. Using the Trapezoid Rule, approximate

∫ 2

0

x

1 + x2
dx with four trapezoids.

1
2

1 3
2

2

0.2

0.4

0.6

By the Trapezoid Rule gives the approximation

T4 =
1

2

(
2− 0

4

)[
f(x0) + 2f(x1) + 2f(x2) + 2f(x3) + f(x4)

]
=

1

2
(0.5)

[
f(0) + 2f(0.5) + 2f(1) + 2f(1.5) + f(2)

]
=

1

2
(0.5)

[
0 + 2(0.4) + 2(0.5) + 2(0.461538) + (0.4)

]
= 0.780769.

It is a general fact that for any three distinct, non-collinear points, we can find a unique parabola that
passes through all three. This means that, if we break our interval up into an even number of smaller
intervals [xi, xi+1], we can find a parabola passing through the points f(xi−1), f(xi), and f(xi+1) whose
area over the interval [xi−1, xi+1] approximates the area of the curve over this same interval. Visually,

x0 x1 x2 xn

This fact leads us to another approximation method that is easy to implement (but whose derivation is
less straightforward – see your book for details). Note that the coefficient pattern is 1, 4, 2, 4, 2, . . . , 2, 4, 1.

Proposition 6.5.6 (Simpson’s Rule). For even n,∫ b

a

f(x) dx ≈ Sn=
1

3
∆x

[
f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + 4f(x5) + · · ·+ 4f(xn−1) + f(xn)

]
.
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Example 6.5.7. Using Simpson’s rule, approximate

∫ 2

0

x

1 + x2
dx with four intervals.

1
2

1 3
2

2

0.2

0.4

0.6

Applying Simpson’s Rule, we have

S4 =
1

3
∆x

[
f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + f(x4)

]
=

1

3

(
2− 0

4

)[
f(0) + 4f(0.5) + 2f(1) + 4f(1.5) + f(2)

]
=

1

3
(0.5) [0 + 4(0.4) + 2(0.5) + 4(0.461538) + (0.4)]

= 0.807692.

Example 6.5.8. Using the Fundamental Theorem of Calculus, compute

∫ 2

0

x

1 + x2
dx exactly. Com-

pare this answer with the previous approximations. Which is most accurate?

1
2

1 3
2

2

0.2

0.4

0.6

Using the substitution

u = 1 + x2

du = 2x dx

u(0) = 1,

u(2) = 5,

we get ∫ 2

0

x

1 + x2
dx =

∫
15 1

2
· du
u

=
1

2
ln(5)− 1

2
ln(1) =

1

2
ln(5) ≈ 0.804719
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Method Approximation Error
Left Riemann Sum 0.680769 0.123950

Right Riemann Sum 0.880769 0.076050

Middle Riemann Sum 0.816934 0.012215

Trapezoid Rule 0.780769 0.023950

Simpson’s Rule 0.807692 0.002973

Exact Value 0.804719 0.000000

Simpson’s rule is by far the most accurate approximation.
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6.6 Improper Integrals

Definition. The integral
∫ b
a
f(x) dx is improper if either the integrand is infinite on the interval [a, b]

or if the interval is infinite.

As with just every other time we’ve encountered the infinite in this class, we’ll use limits to handle it.

6.6.1 Type I: Infinite Interval

Definition (Improper Integrals of Type I).

(a) If
∫ t
a
f(x) dx exists for every t ≥ a, then∫ ∞

a

f(x) dx = lim
t→∞

∫ t

a

f(x) dx,

provided this limit exists.

(b) If
∫ b
t
f(x) dx exists for every t ≤ b, then∫ b

−∞
f(x) dx = lim

t→−∞

∫ b

t

f(x) dx,

provided this limit exists.

The improper integrals
∫∞
a
f(x) dx and

∫ b
−∞ f(x) dx are called convergent if the corresponding limit

exists, and divergent if the limit does not exist.

(c) If both
∫∞
a
f(x) dx and

∫ a
−∞ f(x) dx are convergent for any real number a, then we define∫ ∞
−∞

f(x) dx =

∫ a

−∞
f(x) dx+

∫ ∞
a

f(x) dx.

Example 6.6.1. Evaluate

∫ ∞
1

1

x2
dx.

We cannot actually evaluate this integral at infinity. However, we can evaluate it on the interval [1, t]
and let t→∞. So ∫ ∞

1

1

x2
dx = lim

t→∞

∫ t

1

1

x2
dx

= lim
t→∞

(
−1

x

)∣∣∣∣t
1

= lim
t→∞

(
−1

t
+ 1

)
= 1.
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Example 6.6.2. Determine whether the integral converges or diverges:

∫ ∞
3

1

(x− 2)3/2
dx.

We’ll need the substitution u = x− 2 and du = dx. So, then u(3) = 1 and u(b)→∞ as b→∞.∫ ∞
3

1

(x− 2)3/2
dx = lim

b→∞

∫ b

3

1

(x− 2)3/2
dx = lim

b→∞

∫ b

1

1

u3/2
du

= lim
b→∞

∫ b

1

u−3/2 du

= lim
b→∞
−2u−1/2

∣∣b
1

= lim
b→∞
−2b−1/2 + 2

= 0 + 2 = 2.

The integral converges.

Example 6.6.3. Evaluate

∫ ∞
1

1

x
dx if it converges. Otherwise state that it does not converge.

∫ ∞
1

1

x
dx = lim

b→∞

∫ b

1

1

x
dx

= lim
b→∞

lnx|b1
= lim

b→∞
ln b− ln 1

=∞+ 0 =∞.

The integral diverges.

Example 6.6.4. For which values of p does the integral

∫ ∞
1

1

xp
dx converge?

As we saw in Example 6.6.3, when p = 1, the integral does not converge. So let’s see about the case
where p 6= 1. ∫ ∞

1

1

xp
dx = lim

b→∞

∫ b

1

1

xp
dx

= lim
b→∞

∫ b

1

x−p dx

= lim
b→∞

1

−p+ 1
x(−p+1)

∣∣∣∣b
1

= lim
b→∞

1

−p+ 1

(
b(−p+1) − 1

)
.

We see that lim
b→∞

b(−p+1) converges precisely when −p + 1 < 0, which is precisely when p > 1. Thus

the integral converges for all p > 1.
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Example 6.6.5. Evaluate

∫ ∞
−∞

xe−x
2

dx.

We’ll first approach the indefinite integral with the substitution u = −x2, du = −2x dx:∫
xe−x

2

dx = −1

2

∫
eu du = −1

2
eu + C = −1

2
e−x

2

+ C.

Thus we can break up the integral at some arbitrary point in the interval (−∞,∞), say at x = 0.∫ ∞
−∞

xe−x
2

dx =

∫ 0

−∞
xe−x

2

dx+

∫ ∞
0

xe−x
2

dx

= lim
a→−∞

∫ 0

a

xe−x
2

dx+ lim
b→∞

∫ b

0

xe−x
2

dx

= lim
a→−∞

(
−1

2
+

1

2
e−a

2

)
+ lim

b→∞

(
−1

2
e−b

2

+
1

2

)
=

(
−1

2
+ 0

)
+

(
0 +

1

2

)
= 0.

6.6.2 Type II: Discontinuous Integrand

Definition (Improper Integrals of Type II).

(a) If f is continuous on [a, b) and is discontinuous at b, then∫ b

a

f(x) dx = lim
t→b−

∫ t

a

f(x) dx

provided this limit exists.

(b) If f is continuous on (a, b] and is discontinuous at a, then∫ b

a

f(x) dx = lim
t→a+

∫ b

t

f(x) dx

provided this limit exists.

The improper integral
∫ b
a
f(x) dx is called convergent if the corresponding limit exists and divergent

if the limit does not exist.

(c) If f has a discontinuity at c, a real number in (a, b), and both
∫ c
a
f(x) dx and

∫ b
c
f(x) dx are

convergent, then we define ∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx.
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Example 6.6.6. Evaluate

∫ 3

0

1

(x− 2)2
dx.

Notice that the integrand is undefined at x = 2, so we’ll need to split it up here.∫ 3

0

1

(x− 2)2
dx =

∫ 2

0

1

(x− 2)2
dx+

∫ 3

2

1

(x− 2)2
dx

= lim
b→2−

∫ b

0

1

(x− 2)2
dx+ lim

a→2+

∫ 3

a

1

(x− 2)2
dx.

Now, with the substitution u = x − 2 and du = dx, we have that u(0) = −2, u(2) = 0 and u(3) = 1,
so

= lim
b→0−

∫ b

−2

1

u2
du+ lim

a→0+

∫ 1

a

1

u2
du

= lim
b→0−

(
−b−1 + (−2)2

)
+ lim

a→0+
(−1 + a1) .

Since neither of these limits converge, the integral is divergent.

Example 6.6.7. Evaluate

∫ 9

0

1
3
√
x− 1

dx.

The integrand is undefined at x = 1, so we’ll need to split it up here.∫ 9

0

1
3
√
x− 1

dx =

∫ 1

0

1
3
√
x− 1

dx+

∫ 9

1

1
3
√
x− 1

dx

= lim
b→1−

∫ b

0

1
3
√
x− 1

dx+ lim
a→1+

∫ 9

a

1
3
√
x− 1

dx.

Now, with the substitution u = x − 1 and du = dx, we have that u(0) = −1, u(1) = 0 and u(9) = 8,
so

= lim
b→0−

∫ b

−1

u−1/3 dx+ lim
a→0+

∫ 8

a

u−1/3 dx

= lim
b→0−

[
3

2
u2/3

]b
−1

+ lim
a→0+

[
3

2
u2/3

]8

a

= lim
b→0−

(
3

2
b2/3 − 3

2

)
+ lim

a→0+

(
6− 3

2
a2/3

)
= −3

2
+ 6 =

9

2
.
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6.6.3 A Comparison Test for Improper Integrals

Before trying to evaluate or approximate an improper integral, it’s important to know whether or not
the integral even converges.

Theorem 6.6.8 (Comparison Tests). Suppose f and g are continuous functions with f(x) ≥ g(x) ≥ 0
for x ≥ a.

1. If
∫∞
a
f(x) dx is convergent, then

∫∞
a
g(x) dx is convergent.

2. If
∫∞
a
g(x) dx is divergent, then

∫∞
a
f(x) dx is divergent.

Example 6.6.9. Does

∫ ∞
3

1

x2 lnx
dx converge or diverge?

Notice that for x ≥ 3, we have

1 ≤ lnx

x2 ≤ x2 lnx

1

x2
≥ 1

x2 lnx
.

So, we’ll apply our comparison test with f(x) = 1
x2

and g(x) = 1
x2 lnx

.

We know from Example 6.6.4 that
∫∞

3
f(x) dx converges, so then it must be that

∫∞
3
g(x) dx converges

as well.

Example 6.6.10. Does

∫ ∞
1

2 + e−x

x
dx converge or diverge?

Since e−x ≥ 0 for all x, we have

2 + e−x

x
≥ 2

x
.

So, we’ll apply our comparison test with f(x) = 2+e−x

x
and g(x) = 2

x
.

We know from Example 6.6.3 that
∫∞

1
g(x) dx diverges, so then it must be that

∫∞
1
f(x) dx diverges

also.
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7 Applications of Integration

7.1 Area Between Curves

Recall that the area under the curve y = f(x) on the interval [a, b] is given by the definite integral∫ b

a

f(x) dx. What if we wanted to find the area between two curves? Consider both of the following

figures below.

1
2

1 3
2

2

−1

1

2

1
2

1 3
2

2

−1

1

2

We suspect that the area between the curves is just the difference of the integrals. Indeed, this is the
case. If we consider formally the Riemann sums, we have that at each marked point x∗ each rectangle
has height f(x∗)− g(x∗) (when f(x) ≥ g(x)), and the sum of all these gives us exactly the following

The area between the curves y = f(x) and y = g(x) on the interval [a, b] is

A =

∫ b

a

|f(x)− g(x)| dx.

Example 7.1.1. Find the area between the curves y = x− 2 and y = x2

3
− 2

1 2 3

−2

−1

1 y=x−2
y= 1

3
x2−2

First we find our limits of integration by setting the two func-
tions equal to one another and solving for x:

x− 2 =
x2

3
− 2

x2

3
− x = 0

1

3
x(x− 3) = 0

⇒ x = 0, 3

Since y = x− 2 is the “top” function, we have∫ 3

0

(
(x− 2)−

(
x2

3
− 2

))
dx =

∫ 3

0

(
x− x2

3

)
dx

=

[
x2

2
− x3

9

]3

0

=
3

2
.
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Example 7.1.2. Find the area between the curves y2 = 3− x and y = x− 1

−2

−1

1

2

−2

−1

1

2

Notice in the image on the left that we would have to have two separate integrals, because the “top”
function would change at x = 1

2
. Instead, we’ll draw horizontal rectangles and just integrate with

respect to y, since the “top” and “bottom” functions do not change in this direction. This also saves
us from the hassle of integrating square roots of functions. We proceed by solving each equation for x
(in terms of y) and setting them equal to find the points of intersection:

3− y2 = y + 1

y2 + y − 2 = 0

(y + 2)(y − 1) = 0

⇒ y = −2, 1.

So, the area between these two curves is∫ 1

−2

(
(y + 1)−

(
3− y2

))
dx =

∫ 1

−2

(
−y2 − y + 2

)
dx

=

[
−1

3
y3 − 1

2
y2 + 2y

]1

−2

=
9

2
.

Example 7.1.3. Find the area of the region bounded by y = tanx, y = −1, and x = π
4
.

−π
4

π
4

−1

−0.5

0.5

1

∫ π/4

−π/4
(tanx− (−1)) dx =

∫ π/4

−π/4
(tanx+ 1) dx

= [ln | secx|+ x]
π/4
−π/4

=
π

2
.
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Example 7.1.4. Find the area between the two curves y = cosx and y = sin 2x on the interval [0, π
2
].

π
6

π
3

π
2

−1

−0.5

0.5

1

We have to consider two separate areas. Note that the curves intersect at x = π
6
.

A1 =

∫ π/6

0

(cosx− sin(2x)) dx

=

[
sinx+

1

2
cos(2x)

]π/6
0

=
1

4
.

and

A2 =

∫ π/2

π/6

(sin(2x)− cosx) dx

=

[
−1

2
cos(2x)− sinx

]π/2
π/6

=
1

4
.

And so the entire area is A = A1 + A2 = 1
2
.
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7.2 Volumes

Just as we defined area as summing up a bunch of infinitestimal lengths, we can do the same with
volumes by summing up a bunch of infinitesimal cross-sectional areas. Formally, we have the following
definition.

Definition. Let S be a solid lying between x = a and x = b. If the cross-sectional area of S in the
plane Px (through x and perpendicular to the x-axis), is A(x), where A is an integrable function, then
the volume of S is

V = lim
max ∆xi→0

n∑
i=1

A(x∗i )∆xi =

∫ b

a

A(x) dx

Example 7.2.1. What is the volume of a right circular cone of height h and radius r?

x h

−r

y

r

Notice that the cross-sectional area through x is a circle of radius y, so the area is A(x) = πy2. In
order to integrate A with respect to x, we need to write y as a function of x. Notice that by similar
triangles,

r

h
=
y

x
⇒ y =

rx

h
.

Thus the volume is given by

V =

∫ h

0

πy2 dx =

∫ h

0

π
(rx
h

)2

dx

=
πr2

h2

∫ h

0

x2 dx

=
πr2

h2

[
1

3
h3 − 0

]
=

1

3
πr2h.

This is exactly the volume of a cone that we all remember from the countless conical tank related rates
problems.

The previous example affirms that our strategy for finding the volume is indeed correct. So now we
can use it to find the volume of objects whose volumes don’t know a priori.
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Example 7.2.2. Find the volume of a spherical cap with radius r and height h.

x

At each point x, the corresponding cross-section has radius y =
√
r2 − x2. This means that each

cross-sectional area is

A(x) = πy2 = π(r2 − x2).

Since our spherical cap has height h, we integrate from x = r − h to r, which gives us

V =

∫ r

r−h
A(x) dx

=

∫ r

r−h
π(r2 − x2) dx

=
[
πr2x− π

3
x3
]r
r−h

= πr3 − π

3
r3 − πr2(r − h) +

π

3
(r − h)3

= πr3 − π

3
r3 − πr3 + πr2h+

π

3
r3 − πr2h+ πrh2 − π

3
h3

=
π

3
h2(3r − h).
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Example 7.2.3. Find the volume of the solid obtained by rotating the region bounded by the curves
y = x and y = x2 about the x-axis.

1

1

(a) Cross-sectional Area (b) Revolved Solid

At each point x, the corresponding cross-section is a washer with inner radius x2 and outer radius x.
This means that each cross-sectional area is

A(x) = πx2 − π(x2)2.

Since y = x and y = x2 intersect at both x = 0 and x = 1, we integrate from x = 0 to 1, which gives
us

V =

∫ 1

0

A(x) dx

=

∫ 1

0

πx2 − πx4 dx

=
[π

3
x3 − π

5
x5
]1

0

=
π

3
− π

5

=
2π

15
.
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Example 7.2.4. Find the volume of a solid obtained by rotating the region bounded by the curves
y = x and y =

√
x about the line x = 2.

1 2 3 4

1

(a) Cross-sectional Area (b) Revolved Solid

Notice that each horizontal cross section (now we’re looking to integrate with respect to y) is a washer
with inner radius 2− y and outer radius 2− y2, and thus the area is given by

A(y) = π(2− y2)2 − π(2− y)2 = 4π − 4πy2 + πy4 − 4π + 4πy − πy2 = πy4 − 5πy2 + 4πy.

Since y = x and y =
√
x intersect at both y = 0 and y = 1, we integrate from y = 0 to 1, which gives

us

V =

∫ 1

0

A(y) dy

=

∫ 1

0

πy4 − 5πy2 + 4πy dy

=

[
π

5
y5 − 5π

3
y3 + 2πy2

]1

0

=
π

5
− 5π

3
+ 2π =

8π

15
.
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Example 7.2.5. Find the volume of the solid bounded by y = 4−x2 and the x-axis whose horizontal
cross-sections are all squares.

−2 2

4

(a) Cross-sectional Area
(b) Solid Region

For each y, cross-sectional area here is a square with side length 2x = 2
√

4− y. The area function is
thus

A(y) = (2x)2 = 4(4− y) = 16− 4y.

Notice that we’ll integrate from y = 0 to 4. Thus the volume of this solid is given by

V =

∫ 4

0

A(y) dy

=

∫ 4

0

16− 4y dy

=
[
16y − 2y2

]4
0

= 64− 32

= 32.
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Example 7.2.6. Set up the integral representing the volume of a torus with major radius R and
minor radius r. Assume R > r.

R

r

(a) Cross-sectional Area

(b) Revolved Solid

Once again, the horizontal cross-section is a washer with outer radius R+
√
r2 − y2 and inner radius

R−
√
r2 − y2, so the cross-sectional area is

A(y) = π
(
R +

√
r2 − y2

)2

− π
(
R−

√
r2 − y2

)2

Notice that we’ll integrate from y = −r to r. Thus the volume of this torus is given by

V =

∫ r

−r
A(y) dy

=

∫ r

−r
π
(
R +

√
r2 − y2

)2

− π
(
R−

√
r2 − y2

)2

dy.
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7.3 Volumes by Cylindrical Shells

If we slice our solid of revolution parallel to the axis of rotation, we end up with tiny cylinders of
infinitesimal thickness.

Example 7.3.1. Find the volume of the solid generated by rotating the region bounded by y = 2x
and y = x2 about the y-axis.

R

r

(a) Cross-sectional Area
(b) Revolved Solid

To slice parallel will involve integrating with respect to x. The cylinder will have area 2πrh, so at a
specific point x, we get that r = x and the height is the difference of the functions h = 2x− x2, hence
at each x, our area is A(x) = 2πx(2x− x2). Our limits of integration are

2x = x2

x2 − 2x = 0

x(x− 2) = 0

⇒ x = 0, 2.

Thus, we integrate over all of these areas and get

V =

∫ 2

0

A(x) dx =

∫ 2

0

2πx(2x− x2) dx

= 2π

∫ 2

0

2x2 − x3 dx

= 2π

[
2

3
x3 − 1

4
x4

]2

0

=
8π

3
.
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Example 7.3.2. Find the volume of the solid generated by rotating the region bounded by y = 2x,
y = x2 about the x-axis. (Use the method of cylindrical shells)

2 4 6 8

−4

−2

2

4

(a) Cross-sectional Area
(b) Revolved Solid

Since cylindrical shells are parallel to the x-axis, we’ll be integrating with respect to y. Our functions,
rewritten in terms of y, are

y = 2x⇒ x =
1

2
y

y = x2 ⇒ x =
√
y

At each fixed value y, our cylindrical shell will have radius y and height
√
y − 1

2
y. So, the shell’s area

is A(y) = 2πy
(√

y − 1
2
y
)
. The limits of integration will be from 0 to 4. Thus, the volume of this solid

is

V =

∫ 4

0

A(y) dy =

∫ 4

0

2πy

(
√
y − 1

2
y

)
dy

= 2π

∫ 4

0

y3/2 − 1

2
y2 dy

= 2π

[
2

5
y5/2 − 1

6
y3

]4

0

=
64π

15
.
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Example 7.3.3. Using cylindrical shells, find the volume of the region bounded by y = 9x√
1+x3

, x = 0,
and x = 2, rotated about the y-axis.

−3 −2 −1 1 2 3

1

2

3

4

5

6

7

(a) Cross-sectional Area
(b) Revolved Solid

Notice that if we try to use a washer, we’ll have to use two separate integrals. So instead we use the
shell method, integrating with respect to x. Our radius will thus be x and our height will be 9x√

1+x3
. Our

limits of integration are 0 to 2. Thus, the area of each cylindrical shell will be A(x) = 2πx
(

9x√
1+x3

)
.

Thus, the volume is

V =

∫ 2

0

A(x) dx =

∫ 2

0

2πx

(
9x√

1 + x3

)
dx

= 18π

∫ 2

0

x2

√
1 + x3

dx.

Using the substituion

u = 1 + x3, du = 3x2dx,

u(0) = 1, u(2) = 9,

we get

18π

∫ 2

0

x2

√
1 + x3

dx = 6π

∫ 9

1

du√
u

= 6π
[
2
√
u
]9

1

= 24π.

Remark. Beyond simplifying our lives a bit by only requiring one integral, it turns out that there is
no way (with only elementary functions) to solve for x in y = 9x√

1+x3
, so using the disk/washer method

is effectively impossible.
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Example 7.3.4. Using cylindrical shells, find the volume of the solid generated by rotating the region
bounded by y =

√
x, y = 0, and x = 9, about the line y = −5.

2 4 6 8

−5

5

(a) Cross-sectional Area
(b) Revolved Solid

Using cylindrical shells, We see that our limits of integration will be 0 to 3. The radius will be
y − (−5) = y + 5, and the height of these cylinders will be 9− y2. Thus the area of each cylinder will
be A(y) = 2π(y + 5)(9− y2). Hence, our volume is

V =

∫ 3

0

A(y) dy =

∫ 3

0

2π(y + 5)(9− y2) dy

= 2π

∫ 3

0

(−y3 − 5y2 + 9y + 45) dy

= 2π

[
−1

4
y4 − 5

3
y3 +

9

2
y2 + 45y

]3

0

=
441π

2
.
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Example 7.3.5. Set up the definite integral for the volume of the solid generated by rotating the
region bounded by y = −x2 + 6x− 8, y = 0, about the y-axis.

1 2 3 4

1

2

3

4

(a) Cross-sectional Area
(b) Revolved Solid

From the graph, we see that the shell method is easier. From the y-axis, the radius is x and the height
is x2 + 6x− 8, so the area is given by A(x) = 2πx(x2 + 6x− 8) = 2π(x3 + 6x2− 8x). Hence our volume
is

V =

∫ 4

2

A(x) dx = 2π

∫ 4

2

x3 + 6x2 − 8x dx

= 2π

[
1

4
x4 + 2x3 − 4x2

]4

2

= 248π.
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Example 7.3.6. Set up the definite integral for the volume of the solid generated by rotating the
region bounded by y = sin(

√
x), y = 0, x = 0, x = π2, about the y-axis.

2 4 6 8 10

0.5

1

(a) Cross-sectional Area
(b) Revolved Solid

From the graph, we see that the shell method is much easier. From the y-axis, the radius is x and the
height is sin(

√
x), so the area is A(x) = 2πx sin(

√
x). Thus the volume is

V =

∫ π2

0

A(x) dx = 2π

∫ π2

0

x sin(
√
x) dx

= 4π

∫ u=π

u=0

u sin(u) du (substitution u = x1/2, du =
1

2
x−1/2 dx)

= 4π [sin(u)− u cos(x)]π0 (integrating by parts)

= 4π2.

55



7.4 Arc Length

Approximate a smooth curve y = f(x) with a bunch of line segments, like so:

Each of these line segments has length L =
√

(x2 − x1)2 + (y2 − y1)2. So we have

L =
√

(x2 − x1)2 + (y2 − y1)2

=
√

(∆x)2 + (∆y)2

=

√
(∆x)2 +

(
∆y

∆x

)2

(∆x)2

=

√
1 +

(
∆y

∆x

)2

·∆x.

The length of the arc over the interval [a, b] is just approximately the sum of each of these lengths. As
the number of segments increases, our accuracy increases and the length ∆x becomes the infinitesimally
tiny dx. As well, ∆y

∆x
becomes dy

dx
= f ′(x). This gives us the following useful fact:

Fact. The arc length of the curve y = f(x) on the interval [a, b] is given by

L =

∫ b

a

√
1 +

[
dy

dx

]2

dx =

∫ b

a

√
1 + [f ′(x)]2 dx.

Similarly, the arc length of the curve x = g(y) on the interval [h, k] is given by

L =

∫ k

h

√
1 +

[
dx

dy

]2

dy =

∫ k

h

√
1 + [g′(y)]2 dy.

Remark. This is not the mathematical definition of arc length, but rather a very specific case when
your arc is of the form y = f(x) or x = g(y). See your book or an introductory differential geometry
text for more discussion on arc length.
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Example 7.4.1. Find the arc length of the curve y = x3/2 for 1 ≤ x ≤ 3.

1 2 3 4

2

4

6

8

We’ll first work with the radicand.

1 + (y′)
2

= 1 +

(
3

2
x1/2

)2

= 1 +
9

4
x

So, the arc length is

L =

∫ 3

1

√
1 +

9

4
x dx

=
4

9

∫ 31/4

13/4

√
u du

=
4

9

[
2

3
u3/2

]31/4

13/4

=
1

27

(
31
√

31− 13
√

13
)
.

Example 7.4.2. Find the arc length of the curve y = ln(cos(x)) for 0 ≤ x ≤ π
4
.

−π
8

π
8

π
4

3π
8

−1

− 1
2

We’ll first work with the radicand.

1 + (y′)
2

= 1 + tan2(x)

= sec2 x.

So, the arc length is

L =

∫ π/4

0

√
sec2(x) dx

=

∫ π/4

0

sec(x)

= [ln | sec(x) + tan(x)|]π/40

= ln(
√

2 + 1)− ln(1) ≈ 0.881.
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Example 7.4.3. Find the arc length of the curve y = 1
3
x3 + 1

4x
for 1 ≤ x ≤ 2.

1 2 3

1

2

3

Again we work with the radicand first.

1 + (y′)
2

= 1 +

(
x2 − 1

4x2

)2

= 1 +

(
x4 − 1

2
+

1

16x4

)
= x4 +

1

2
+

1

16x4

=

(
x2 +

1

4x2

)2

So, our arc length becomes

L =

∫ 2

1

√(
x2 +

1

4x2

)2

dx

=

∫ 2

1

x2 +
1

4x2
dx

=

[
1

3
x3 − 1

4x

]2

1

=
59

24
.
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Example 7.4.4. Find the arc length of the curve x = 1
3

√
y(y − 3), from y = 1 to y = 9.

−2 2 4 6

2

4

6

8

10

Again, we start with just the radicand.

1 + (x′)2 = 1 +

(
1

2
y1/2 − 1

2
y−1/2

)2

= 1 +

(
1

4
y − 1

2
+

1

4
y−1

)
=

1

4
y +

1

2
+

1

4
y−1

=

(
1

2
y1/2 +

1

2
y−1/2

)2

Our arc length is then

L =

∫ 9

1

√(
1

2
y1/2 +

1

2
y−1/2

)2

dy

=

∫ 9

1

1

2
y1/2 +

1

2
y−1/2 dy

=

[
1

3
y3/2 + y1/2

]9

1

=
32

3

Example 7.4.5. Find the circumference of a circle of radius r.

r

−1

−0.5

0.5

1

This is left as a challenge to the reader, who may recall that x2 + y2 = r2. (Hint: Try computing the
arc length of just one quadrant of the circle.)
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7.6 Applications to Physics and Engineering

Recall that the force equation is F = ma = md2s
dt2

= ρgV (where ρ is density and g is gravity’s
acceleration) and that the work equation is W = Fd, where d is distance. When the force is constant,
it’s easy to find the work done, but what if the force is not constant? Well, we can approximate the
work done by breaking up our distance d into smaller subintervals, treating the work as constant on
each subinterval, and then summing those together. To get an exact answer, we take a limit over more
and more subintervals. Well, this is exactly a procedure of Riemann sums, so we get the following

Definition. The work done in moving an object from a to b is

W =

∫ b

a

F (x) dx,

where F (x) is the variable force of the object.

In SI units work is in measured in Joules (denoted J), and in imperial units work is measured in
foot-pounds (denoted ft-lb).

Example 7.6.1. A variable force of f(x) = 5x−2 lb moves an object along a straight line when the
object is x ft from the origin. Calculate the work done moving the object from x = 1 ft to x = 10 ft.

W =

∫ 10

1

f(x) dx =

∫ 10

1

5x−2 dx =
[
−5x−1

]10

1
=

9

2
ft-lb.

Example 7.6.2. An aquarium 2 m long, 1 m wide, and 1 m deep is full of water. How much work
is done when pumping all of the water out of the top of the tank? How much work is done when
pumping only half of the water out?

1
m

1
m

2 m

y

Each “slice” of water is dy thick, and has volume 2dym3. Recall that, in SI units, water weighs
9800 kg/m3, and so the incremental force function is 9800 · 2dy = 19600dy. Moving each “slice” of
water up y units to the top of the tank until the tank is empty gives us the following:

W =

∫ 1

0

9800(y)(2) dy = 19600

∫ 1

0

y dy = 19600

[
1

2
y2

]1

0

= 9800 J.

To only empty half of the tank, notice that y varies from 0 to 1/2, so we get that the amount of work
done is

W = 19600

∫ 1/2

0

y dy = 19600

[
1

2
y2

]1/2

0

= 2450 J.
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Remark. When non-constant forces are involved, moving half the distance is not equivalent to doing
only half the work.

Example 7.6.3. A circular swimming pool has a diameter of 24 ft, sides of 5 ft in height, and a water
level of 4 ft. How much work is required to pump all of the water out of the top of pool?

12 ft

5
ft

y

Each “slice” of water is dy thick, and has volume π(12)2dy = 144πdy ft3. Recall that water weighs
62.5 lb/ft3, and so the incremental force function is given by 62.5(144π)dy = 9000πdy. Note that y
starts at 1 because the water level is 1 ft below the top of the pool. Moving each “slice” of water up y
units to the top of the tank until the tank is empty gives us the following:

W =

∫ 5

1

9000πy dy = 9000π

∫ 5

1

y dy = 9000π

[
1

2
y2

]5

1

= 108, 000π ft-lb.

Example 7.6.4. An tank shaped like an inverted right-angled circular cone, with height 12 m and
base radius 4 m, is full of water. Water is pumped out through the top of the tank with a hose until
the water level is 4 m high. How much work is done in pumping the water out?

4 m

r

1
2

m

y

By similar triangles, the “slice” of water shown in the diagram has radius r = 4(12− y)/12. So, given
a thickness of dy, each “slice” has volume πr2dy = (π/9)(12 − y)2dy. Recall that, in SI units, water
weighs 9800 kg/m3, and so the incremental force function is (9800π/9)(12− y)2dy. Note that y stops
at 8 because we want to leave 4 m of water in the tank. Moving each “slice” of water up y units to
the top of the tank until the tank has only 4 m of water gives us the following

W =
9800π

9

∫ 8

0

(12− y)2y dy =
9800π

9

[
1

4
y4 − 8y3 + 72y2

]8

0

=
5, 017, 600π

3
J ≈ 5.2544× 106 J.
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Example 7.6.5. A triangular trough 3 m high, 3 m wide, and 8 m long is full of water. Water is
pumped out of the top of the trough through a 2 m tall spigot. How much work is required to empty
the trough?

2
m

3
m

3 m

y

By similar triangles, the width w of the water “slice” is w = 3− y, and since each slice is dy thick and
8 m long, we have that the volume of each slice is given by 8(3− y)dy. Recall that, in SI units, water
weighs 9800 kg/m3, and so the incremental force function is 9800(8)(3− y)dy. Moving each “slice” up
y + 2 meters (y for the tank, 2 for the spigot) until the tank is empty, we have that the work is given
by

W = 78400

∫ 3

0

(3− y)(y + 2) dy = 78400

[
−1

3
y3 +

1

2
y2 + 6y

]3

0

= 1, 058, 400 J.

Example 7.6.6. A hemispherical tank with radius 8 ft is filled with water. Find the amount of work
done in pumping all of the water out of the tank.

8
ft

8 ft

r

y

We can form a right triangle with height y, base r, and hypotenuse 8. At height y, applying the
Pythagorean theorem yields that the radius of each “slice” of water is r =

√
64− y2. Each “slice” of

water is dy thick, and has volume π(64 − y2)dy ft3. Recall that water weighs 62.5 lb/ft3, and so the
incremental force function is given by 62.5π(64 − y2)dy. Moving each “slice” of water up y units to
the top of the tank until the tank is empty gives us the following:

W =

∫ 8

0

62.5π(64− y2) dy = 62.5π

[
64y − 1

3
y3

]8

0

=
64, 000π

3
ft-lb ≈ 67020.6 ft-lb.
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Example 7.6.7. A 15 ft chain weighing 3 lb per foot is lying coiled on the ground. How much work
is required to raise one end of the chain to a height of 15 ft?

Notice that the force changes with every foot of chain lifted. So at height y, there are y ft of chain off
the ground, which means our force function is F (y) = 3y lb. And so, the total work required is

W =

∫ 15

0

3y dy =

[
3

2
y2

]15

0

=
675

2
ft-lb.

Example 7.6.8. A force of 100 lb is required to compress a spring 6 in from its natural length of 2 ft.
Find the work done (in ft-lb) in compressing the spring an additional 3 in.

First we’ll do some conversions: 6 in = 0.5 ft and 3 in = 0.25 ft. Now using Hooke’s law, F (x) = kx,
we first have to solve for the spring constant k.

100 = k(0.5) ⇒ k = 200,

and thus the force function for this spring is given by F (x) = 200x. So, to compress it an additional
3 in, we need to integrate from 6 in to 9 in:

W =

∫ 3/4

1/2

200x dx =
[
100x2

]3/4
1/2

=
125

4
= 31.25 ft-lb.
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8 Series

8.1 Sequences

Definition. A sequence of real numbers is the image of a function a : N → R, but can be thought
of as an ordered list of real numbers

{a1, a2, a3, . . .},

We often denote the sequence as {an}∞n=1 or just {an} (some authors replace the curly braces with
parentheses instead).

Frequently, you will see sequences written in one of three different ways: using the aforementioned
notation, giving a defining function for an, or explicitly writing out the terms of the sequence. We also
note that n does not necessarily have to start at 1.

Example 8.1.1. The following sequential descriptions are equivalent:{
1

n2

}∞
n=3

an =
1

n2
, n ≥ 3

{
1

9
,

1

16
,

1

25
,

1

36
, . . . ,

1

n2
, . . .

}
.

For the most part, it’s useful to find an explicit description for each nth term, as in the first or second
way of writing it.

Example 8.1.2. Given the sequence
{

1
2
, 2

3
, 3

4
, 4

5
, . . .

}
, find an explicit description for an.

Notice that the numerator and denominator both increase by 1 each time, and that the denominator
is always 1 more than the numerator. Thus, we can write

an =
n

n+ 1
, n ≥ 1 or

{
n

n+ 1

}∞
n=1

Example 8.1.3. Given the sequence
{−1

2
, 2

3
, −3

4
, 4

5
, . . .

}
, find an explicit description for an.

Notice this is the same sequence as in Example 8.1.2, except when n is odd, we have that the term is
negative, and when n is even, we have that the term is positive. Thus, we can use the fact that (−1)n

is negative for n is odd and positive for when n is even, which gives us

an =
(−1)nn

n+ 1
, n ≥ 1 or

{
(−1)nn

n+ 1

}∞
n=1

.

Since sequences are just discrete functions, it may be useful to see what sorts of things we can do with
them. Much like we’ve seen before, we can discuss limits of sequences.

Definition. A sequence {an} is convergent if there exists a real number L so that

lim
n→∞

an = L.

If a sequence is not convergent, then we say that the sequence is divergent.
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The following theorem tells us that we can deal with limits of sequences by using many of our previous
techniques for functions on the real numbers:

Theorem 8.1.4. If f : R→ R with f(n) = an (where n is an integer) and lim
x→∞

f(x) = L, then

lim
n→∞

an = L.

As a result of this limit correspondence, we have the following statements about convergent sequences:

Proposition 8.1.5. Let {an}, {bn} be convergent sequences and c a constant. Then,

1. lim
n→∞

(an ± bn) = lim
n→∞

an ± lim
n→∞

bn

2. lim
n→∞

c · an = c ·
(

lim
n→∞

an

)
3. lim

n→∞
(an · bn) =

(
lim
n→∞

an

)
·
(
± lim

n→∞
bn

)
4. lim

n→∞

an
bn

=
limn→∞ an
limn→∞ bn

if lim
n→∞

bn 6= 0

5. lim
n→∞

(an)p =
(

lim
n→∞

an

)p
if p > 0 and an > 0

With these rules, we can prove the following useful fact

Proposition 8.1.6. If lim
n→∞

|an| = 0, then lim
n→∞

an = 0.

The Squeeze Theorem can also be adapted for sequences

Theorem 8.1.7 (Squeeze). If an ≤ bn ≤ cn and lim
n→∞

an = lim
n→∞

cn = L, then lim
n→∞

bn = L.

Example 8.1.8. Find the limit of the sequence, if it converges.

{
37n+ 16

9n− 42

}∞
n=5

.

We can appeal to the limit laws in Proposition 8.1.5:

lim
n→∞

37n+ 16

9n− 42
= lim

n→∞

n
(
37 + 16

n

)
n
(
9− 42

n

)
= lim

n→∞

(
37 + 16

n

)(
9− 42

n

)
=

limn→∞
(
37 + 16

n

)
limn→∞

(
9− 42

n

)
=

limn→∞ 37 + limn→∞
16
n

limn→∞ 9− limn→∞
42
n

=
37

9
.

Example 8.1.9. Find the limit of the sequence, if it converges.

{
(−1)n

n2

}∞
n=1

.

Since
∣∣∣ (−1)n

n2

∣∣∣ = 1
n2 and lim

n→∞

1

n2
= 0, then the given sequence also converges to 0.
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Example 8.1.10. Find the limit of the sequence, if it converges. {2 arctan(n)}∞n=0.

Since f(x) = 2 arctan(x) agrees with an for each n, we have that

lim
n→∞

2 arctan(n) = lim
n→∞

2 arctan(x) = π.

The sequences we’ve seen so far are defined explicitly. Sometimes, however, we may see sequences
defined recursively.

Example 8.1.11. The well-known Fibonacci sequence {Fn} is defined recursively by

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 3.

This gives us

{0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .}.

Example 8.1.12. Find an explicit formula for each term in the given recursive sequence:

a0 = 1, an = 2an for n ≥ 1.

Writing out the sequence, we have

{1, 2, 4, 8, 16, 32, 64, 128, . . .},

which we recognize as the sequence where an = 2n.
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8.2 Series

Definition. The sum of all of the terms in a sequence {an}∞n=1 is called a series, and is denoted
∞∑
n=1

an

or
∑

an.

How do we make sense of talking about the value of an infinite series? As usual, we’ll use limits.

Definition. The partial sums for the series
∞∑
n=1

an are

s1 = a1

s2 = a1 + a2

s3 = a1 + a2 + a3

...

sk =
k∑

n=1

an.

For lack of better terminology on the author’s part, we’ll call sk the kth partial sum, as it is the sum
of all terms up to (and including) the kth term.

Note: if the series starts at some number i 6= 1 then we still take

sk = ai + · · ·+ ak−1 + ak−1 + ak =
k∑
n=i

an

for the purposes of notational simplicity. The common definition in the literature is to define the kth

partial sum as the sum of the first k terms. We will write “the sum of the first k terms” whenever
necessary to avoid ambiguity.

Definition. Let sk denote the kth partial sum of this series
∞∑
n=1

an. We say that this series is conver-

gent if there exists a real number s so that

lim
k→∞

sk = s.

If this series converges, we write

∞∑
n=1

an = s.

We call s the sum of the series. If the sequence of partial sums {sk} does not converge, we say that
the series is divergent.

Example 8.2.1. A geometric series is a series of the form

a+ ar + ar2 + ar3 + · · · =
∞∑
n=0

arn,

where a 6= 0 is some constant and r is called the common ratio. The variable a doesn’t have a name,
but it is useful to think of it as the first term in a geometric series.
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For a geometric series, we can obtain a nifty formula for the partial sum sk:

sk = a+ ar + ar2 + · · ·+ ark

rsk = ar + ar2 + ar3 + · · ·+ ark+1

Then

sk − rsk = a− ark+1

sk(1− r) = a(1− rk+1)

⇒ sk =
k∑

n=0

arn =
a(1− rk+1)

1− r
.

If |r| < 1, then lim
k→∞
|r|k = 0, so limk→∞ r = 0 by Proposition 8.1.6, and it is easy to see that, for the

partial sums above,

lim
k→∞

sk =
a

1− r
.

We can also see that the series diverges when |r| > 1, and the case when |r| = 1 is handled in your
book. These combined lead us to the following result

Theorem 8.2.2 (Geometric Series Test). If |r| < 1,

∞∑
n=0

arn converges, and
∞∑
n=0

arn=
a

1− r
.

If |r| ≥ 1,

∞∑
n=0

arn diverges.

Example 8.2.3. Find the value of the geometric series where a = 5 and r = 1
2
, if it converges. If the

series diverges, clearly state that it diverges.

The series converges since |r| =
∣∣1

2

∣∣ = 1
2
< 1. Thus, by the previous theorem, we have

∞∑
n=0

5

(
1

2

)n
=

5

1− 1
2

= 10.

Example 8.2.4. Find the value of the geometric series
∞∑
k=1

πk+1

ek
, if it converges.

First we need to find the common ratio. Notice that we can rewrite the series slightly as

∞∑
k=1

π · πk

ek
=
∞∑
k=1

π
(π
e

)k
.

In this form, we have that r = π
e
. Since |r| > 1, then the series diverges.

68



Example 8.2.5. Find the value of the geometric series
∞∑
n=5

10

(
1

2

)n
, if it converges.

We see that r = 1
2
, and so by the geometric series test, this series converges. Although we’d like to

use the formula in the geometric series test to determine the value, we have to be careful because that
series starts at n = 0 and ours starts at n = 5. Recalling that a was the first term in our series, this

means that our first term is a = 10
(

1
2

)5
= 5

16
, and so we have that

∞∑
n=5

10

(
1

2

)n
=

5
16

1− 1
2

=
5
16
1
2

=
5

8
.

An alternative method to solving this problem is to do what’s called an “index shift” to make the
series start at 0. Begin by letting m = n − 5. Then when n = 5, m = 0, and as n → ∞, m → ∞ as
well. So we get

∞∑
n=5

10

(
1

2

)n
=

∞∑
m=0

10

(
1

2

)m+5

=
∞∑
m=0

10

(
1

2

)5(
1

2

)m
=

∞∑
m=0

5

16

(
1

2

)m
,

and this means that a = 5
16

again, so we get the same sum with this index shifting approach as well.

One reason we like convergent series so much is because the following result

Proposition 8.2.6. If
∑
an,

∑
bn are convergent series and c is a constant, then

∑
can and

∑
(an±

bn) are convergent series and

1.
∞∑
n=1

can = c
∞∑
n=1

an,

2.
∞∑
n=1

(an ± bn) =
∞∑
n=1

an ±
∞∑
n=1

bn.

Example 8.2.7. Find the sum of the following series, if it converges.
∞∑
m=1

6 + 6m

8m
.

We notice that

∞∑
m=1

6

8m
=

6
8

1− 1
8

=
6

7

and

∞∑
m=1

6m

8m
=

6
8

1− 6
8

= 3,

by since both converge, by Proposition 8.2.6, we have

∞∑
m=1

6 + 6m

8m
=

∞∑
m=1

6

8m
+
∞∑
m=1

6m

8m
=

6

7
+ 3 =

27

7
.
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Example 8.2.8 (Telescoping Series). Find the sum of the following series, if it converges.
∞∑
n=1

1

n2 + 3n+ 2

This sequence is not obviously a geometric series, so we’ll have to approach by a sequence of partial
sums. Notice, however, that we can apply partial fractions to the summand:

∞∑
n=1

1

n2 + 3n+ 2
=
∞∑
n=1

1

(n+ 2)(n+ 1)

=
∞∑
n=1

(
1

n+ 1
− 1

n+ 2

)
And so, each kth partial sum can be written

sk =

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ · · ·+

(
1

k + 1
− 1

k + 2

)
=

1

2
− 1

k + 2
,

and so

∞∑
n=1

1

n2 + 3n+ 1
= lim

k→∞
sk = lim

k→∞

1

2
− 1

k + 2
=

1

2
+ 0 =

1

2
.

Up to this point, we’ve been able to explicitly calculate the sum for these various series. In general,
the best we can hope to do is to show that the series converges at all (at which point we can use a
computer to approximate the value numerically).

Example 8.2.9 (Harmonic Series). Determine whether or not the following series converges.
∞∑
n=1

1

n
.

As a heuristic, we expect this to behave similarly to
∫∞

1
1
x
dx, and thus suspect it might converge. To

see that we are correct, we need to consider the limit of partial sums. But in fact, we can restrict our
attention to only some of the partial sums: s2, s4, s8, s16, etc.

s2 = 1 +
1

2

s4 = 1 +
1

2
+

1

3
+

1

4
> 1 +

1

2
+

1

4
+

1

4
= 1 +

2

2

s8 = · · · > 1 +
3

2

s16 = · · · > 1 +
4

2
...

s2n = · · · > 1 +
n

2

So, as n → ∞, we see also that s2n → ∞, and thus the series above (called the harmonic series)
diverges.
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Theorem 8.2.10 (Divergence Test). If lim
n→∞

an 6= 0, then the series
∞∑
n=1

an diverges.

Note the order of the logic in this theorem. The converse is not true, and the harmonic series provides
the counter example. Also note that the name of the test tells us exactly what its limitations are – it
tests for divergence; not convergence!

Example 8.2.11. Determine whether or not the following series converges.
∞∑
n=0

7n

3(n+41)

Although we recognize that this is a geometric series, we can also see that

lim
n→∞

7n

3(n+41)
=∞,

and so by the previous theorem (8.2.10), the whole series diverges.
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8.3 The Integral and Comparison Tests

Thinking of the series
∑
an as the left-Riemann sums of a function f , we get the following test

Theorem 8.3.1 (Integral Test). Suppose f is a continuous, positive, decreasing function on [k,∞)
and let an = f(n).

1. If

∫ ∞
k

f(x) dx converges, then
∞∑
n=k

an converges.

2. If

∫ ∞
k

f(x) dx diverges, then
∞∑
n=k

an diverges.

Example 8.3.2. Determine if the series
∞∑
n=2

1

n lnn
is convergent or divergent.

Use the function f(x) = 1
x lnx

. For x in the interval [2,∞), this function is positive. As well, as x
increases, the denominator increases, and so the output decreases. So, we determine convergence of
the following integral:∫ ∞

2

1

x lnx
dx = lim

t→∞

∫ t

2

1

x lnx
dx

= lim
t→∞

[ln(lnx)]t2 (substitution of u = lnx)

= lim
t→∞

ln(ln t)− ln(ln 2))

=∞.

So since the integral diverges, the series diverges.

Now that we have this integral test, combining it with the results of Example 6.6.4 gives us

Theorem 8.3.3 (p-Series Test). The p-series
∞∑
n=1

1

np
converges if p > 1 and diverges if p ≤ 1.

Example 8.3.4. Determine if the series
∞∑
n=2

1√
n

converges or diverges.

We have that this series is a p-series with p = 1
2
. So by the p-series test, this series diverges.

The following result is also an adaptation of the comparison test for integrals in Section 6.6.

Theorem 8.3.5 (Comparison Test). Suppose
∑
an and

∑
bn are series with positive terms.

1. If
∑
bn is convergent and an ≤ bn for all n, then

∑
an is also convergent.

2. If
∑
bn is divergent and bn ≤ an for all n, then

∑
an is also divergent.
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Example 8.3.6. Determine whether or not the following series converges or diverges.
∞∑
n=1

3

2n

We have that, for all n,

3

2n
=

3

2
· 1

n
>

1

n
.

Since
∞∑
n=1

1

n
diverges, then by statement 2 in the comparison test, the series

∞∑
n=1

3

2n
diverges also.

Example 8.3.7. Determine whether or not the following series converges or diverges.
∞∑
n=1

2

3n2

We have that, for all n,

2

3n2
=

2

3
· 1

n2
<

1

n2
.

Since
∞∑
n=1

1

n2
converges, then by statement 1 in the comparison test, the series

∞∑
n=1

2

3n2
converges also.
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8.4 Other Convergence Tests

8.4.1 Alternating Series

Definition. An alternating series is a series of the form
∞∑
n=1

(−1)nbn or
∞∑
n=1

(−1)n+1bn,

where bn is a nonnegative number.

Example 8.4.1. Summing the terms of the sequence in Example 8.1.3, we have an alternating series.

Example 8.4.2. The following is an alternating series (sometimes called the alternating harmonic
series):

1− 1

2
+

1

3
− 1

4
+

1

5
+ · · · =

∞∑
n=1

(−1)n+1 1

n
.

Theorem 8.4.3 (Alternating Series Test). If the alternating series
∞∑
n=1

(−1)nbn

satisfies both

1. bn ≥ bn+1 for all n, and

2. lim
n→∞

bn = 0,

then the series is convergent.

Example 8.4.4. Test the alternating harmonic series for convergence or divergence.

We have

bn =
1

n
>

1

n+ 1
= bn+1,

so we satisfy the first condition of the alternating series test. Also,

lim
n→∞

bn = lim
n→∞

1

n
= 0,

so we satisfy the second condition of the alternating series test. Therefore the alternating harmonic
series converges.

Because of alternating series, we can talk about varying strengths of convergence of a series.

Definition. A series
∑
an is said to be absolutely convergent if

∑
|an| converges.

Definition. A series
∑
an is said to be conditionally convergent if it converges, but not absolutely.

Example 8.4.5. Does the alternating harmonic series converge conditionally or absolutely?

We’ve seen that the alternating harmonic series converges. However, since
∞∑
n=1

∣∣∣∣(−1)n−1

n

∣∣∣∣ =
∞∑
n=1

1

n
,

we have that the alternating harmonic series does not converge absolutely. Therefore it converges
conditionally.
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8.4.2 Ratio Test

The following test is arguably the most useful test (the proof of which can be found in the course text)

Theorem 8.4.6 (Ratio Test).

1. If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1, then the series
∑
an is absolutely convergent (hence, convergent).

2. If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ > 1, then the series
∑
an is divergent.

3. If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1, then the test is inconclusive about the convergence or divergence of the series∑
an.

The ratio test nearly always the go-to when there are exponents involving n and/or factorials.

For purposes of simplifying fractions, it may behoove you to remember that

(n+ 1)! = (n+ 1)n(n− 1)(n− 2) · · · 3 · 2 · 1 = (n+ 1) · n!.

Example 8.4.7. Determine if the following series converges or diverges.
∞∑
n=0

n!

2n

Applying the ratio test, we have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (n+1)!
2n+1

n!
2n

∣∣∣∣∣
= lim

n→∞

∣∣∣∣(n+ 1)!

2n+1
· 2n

n!

∣∣∣∣
= lim

n→∞

∣∣∣∣n+ 1

2

∣∣∣∣ > 1.

So, by the ratio test, our series diverges.

Example 8.4.8. Determine if the following series converges or diverges.
∞∑
k=1

k3

(ln 3)k

Applying the ratio test, we have

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣∣∣
(k+1)3

(ln 3)k+1

k3

(ln 3)k

∣∣∣∣∣∣
= lim

k→∞

∣∣∣∣ (k + 1)3

(ln 3)k+1
· (ln 3)k

k3

∣∣∣∣
= lim

k→∞

∣∣∣∣(k + 1)3

(ln 3)k3

∣∣∣∣ =
1

ln 3
< 1.

So, by the ratio test, our series converges absolutely (hence the series converges).
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Example 8.4.9. Determine if the following series converges or diverges.
∞∑
n=2

n22n

5n

Applying the ratio test, we have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (n+1)22n+1

5n+1

n22n

5n

∣∣∣∣∣
= lim

n→∞

∣∣∣∣(n+ 1)22n+1

5n+1
· 5n

n22n

∣∣∣∣
= lim

n→∞

∣∣∣∣2(n+ 1)2

5n2

∣∣∣∣ =
2

5
< 1.

So, by the ratio test, our series converges absolutely (hence the series converges).

Example 8.4.10. Determine if the following series converges or diverges.
∞∑
p=1

(2p)!

(p!)2

Applying the ratio test, we have

lim
p→∞

∣∣∣∣ap+1

ap

∣∣∣∣ = lim
p→∞

∣∣∣∣∣
(2p+2)!
[(p+1)!]2

(2p)!
(p!)2

∣∣∣∣∣
= lim

p→∞

∣∣∣∣ (2p+ 2)!

[(p+ 1)!]2
· (p!)2

(2p)!

∣∣∣∣
= lim

p→∞

∣∣∣∣(2p+ 2)(2p+ 1)

(p+ 1)2

∣∣∣∣ = 4 > 1.

So, by the ratio test, our series diverges.
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8.5 Power Series

Definition. A power series is a series of the form

∞∑
n=0

cnx
n = c0 + c1x+ c2x

2 + c3x
3 + · · ·

where x is a variable and the cn’s are the coefficients of the series. More generally, a power series
centered at a is a series of the form

∞∑
n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + · · ·

We note that a power series should always start at n = 0. If the series is written to start at n = k > 0,
then it is assumed that c0 = · · · = ck−1 = 0.

Given a power series, we can talk about its convergence for each particular x-value.

Example 8.5.1. For which values of x does the series converge?
∞∑
n=0

xn

We see that this looks just like a geometric series with first term a = 1 and ratio x. By the geometric
series test, this series converges for all x where |x| < 1.

Example 8.5.2. For which values of x does the series converge?
∞∑
n=1

(2x− 5)n

n

Applying the Ratio Test, we have

lim
n→∞

∣∣∣∣∣
(2x−5)n+1

n+1

(2x−5)n

n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣(2x− 5)n+1

n+ 1
· n

(2x− 5)n

∣∣∣∣
= lim

n→∞

∣∣∣∣(2x− 5)
n

n+ 1

∣∣∣∣
= |2x− 5|.

By the ratio test, this converges when |2x − 5| < 1 (i.e., when 2 < x < 3) and is inconclusive (may
possibly converge) when |2x − 5| = 1 (i.e., when x = 2, x = 3). When x = 2, our series is the
alternating harmonic series, and thus the series converges. When x = 3, our series is the harmonic
series, which diverges.

The series converges for 2 ≤ x < 3.

Example 8.5.3. For which values of x does the series converge?
∞∑
n=0

(n!)(x− 1)n

Applying the ratio test, we have

lim
n→∞

∣∣∣∣(n+ 1)!(x− 1)n+1

n!(x− 1)n

∣∣∣∣ = lim
n→∞

|x− 1||n+ 1|

When x 6= 1, this limit is infinite, and when x = 1, the limit is 0. Thus the series converges precisely
when x = 1.
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Theorem 8.5.4. For given power series
∞∑
n=0

cn(x− a)n, there are only three possibilities:

1. The series converges only when x = a.

2. The series converges for all x.

3. There is a positive number R such that the series converges if |x − a| < R and diverges if
|x− a| > R.

Definition. The number R in case 3 above is called the radius of convergence of the power series.
The interval consisting of all values of x for which the power series converges is called the interval of
convergence.

Remark. The interval of convergence is not just the open interval (a − R, a + R), but may actually
include the endpoints of this interval as well - these have to be tested separately. For example, Example
8.5.2 has interval of convergence [2, 3).

Example 8.5.5. Find the radius and interval of the convergence for the following series:
∞∑
n=0

(x
2

)n
Notice this is a geometric series with a = 1 and r = x

2
. By the geometric series test, this converges

precisely when
∣∣x

2

∣∣ < 1, i.e., when |x| < 2. So the radius of convergence is 2 and the interval of
convergence is (−2, 2).

Example 8.5.6. Find the interval and radius of convergence for the following series:
∞∑
n=1

(x− 4)n

3
√
n

Using the ratio test, we have

lim
n→∞

∣∣∣∣∣∣
(x−4)n+1

3√n+1

(x−4)n
3√n+1

∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣(x− 4)n+1

3
√
n+ 1

·
3
√
n

(x− 4)n

∣∣∣∣
= lim

n→∞

∣∣∣∣(x− 4) 3
√
n

3
√
n+ 1

∣∣∣∣
= lim

n→∞
|x− 4| ·

∣∣∣∣ 3
√
n

3
√
n+ 1

∣∣∣∣
= |x− 4|

converges when this limit is less than 1, and so |x − 4| < 1 tells us that the radius of convergence is
1. The open interval of convergence is thus (4 − 1, 4 + 1) = (3, 5). Checking the endpoints, x = 3
converges by the alternating series test, and x = 5 diverges by the p-series test. So the interval of
convergence is [3, 5).
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Example 8.5.7. Find the interval and radius of convergence for the following series:
∞∑
n=1

n3(x+ 5)n

6n

Using the ratio test, we have

lim
n→∞

∣∣∣∣(n+ 1)3(x+ 5)n+1

6n+1
· 6n

n3(x+ 5)n

∣∣∣∣ =

∣∣∣∣x+ 5

6

∣∣∣∣
converges when this limit is less than 1, or equivalently, when |x + 5| < 6, and so the radius of
convergence is 6. To find the open interval of convergence, we have |x + 5| < 6 implies −11 < x < 1.
When x = −11 and 1, the series diverges by divergence test, so the interval of convergence (−11, 1).

Example 8.5.8. Find the interval and radius of convergence for the following series:
∞∑
n=1

(x− 2)n

ln(n+ 4)

Using the ratio test, we have

lim
n→∞

∣∣∣∣(x− 2)n+1

ln(n+ 5)
· ln(n+ 4)

(x− 2)n

∣∣∣∣ = |x− 2|

converges when this limit is less than 1, and so |x− 2| < 1 tells us that the radius of convergence is 1.
The open interval of convergence is thus (2 − 1, 2 + 1) = (1, 3). Checking the endpoints, when x = 1
the series converges by alternating series test, and when x = 3 the series diverges by comparing to the
series

∑
1

n+4
. Thus, the interval of convergence is [1, 3).
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8.6 Representing Functions as Power Series

We know that, when |x| < 1, we have

1

1− x
=
∞∑
n=0

xn

What this tells us is that the function f(x) = 1
1−x can be approximated to any degree of accuracy (for

values of x with −1 < x < 1 anyway) by just looking at polynomials 1 + x+ x2 + · · ·+ xn for as large
n as we require. This is fantastic as polynomials are well-studied and extremely easy to evaluate.

Example 8.6.1. Express f(x) = 1
1+8x3

as a power series and find its interval of convergence.

Notice that we have

f(x) =
1

1 + 8x3
=

1

1− (−8x3)
=
∞∑
n=0

(−8x3)n =
∞∑
n=0

(−1)n(8x3)n.

This converges when |8x3| < 1, i.e., when |x| < 1
2
. The interval of convergence is thus

(
−1

2
, 1

2

)
.

Theorem 8.6.2. If the power series
∞∑
n=0

cn(x− a)n has radius of convergence R > 0, then the function

f(x) =
∞∑
n=0

cn(x− a)n is differentiable on the interval (a−R, a+R) and

1.
d

dx
f(x) =

∞∑
n=0

d

dx
[cn(x− a)n] =

∞∑
n=1

ncn(x− a)n−1

2.

∫
f(x) dx =

∞∑
n=0

∫
cn(x− a)n dx = C +

∞∑
n=0

cn
n+ 1

(x− a)n+1

Example 8.6.3. Given the power series for f(x) =
1

1− x
, use differentiation to express g(x) =

1

(1− x)2
as a power series. Find the radius of convergence of this new power series.

We notice that

f ′(x) =
1

(1− x)2
= g(x),

and so

g(x) =
d

dx
f(x) =

∞∑
n=0

d

dx
[xn] =

∞∑
n=1

nxn−1.

Using the Ratio test, we have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(n+ 1)xn

nxn−1

∣∣∣∣
= |x|,

which converges when |x| < 1, so the radius of convergence is 1, which is exactly the same as the
radius of convergence for the series representation of f(x).
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Proposition 8.6.4. Given the series with radius of convergence R > 0 and the function f(x) defined
in the premise for Theorem 8.6.2, the new series obtained from d

dx
[f(x)] and

∫
f(x) dx both have radius

of convergence R.

Example 8.6.5. Given the power series for f(x) =
1

1 + x
, find a power series representation for

g(x) = ln(1 + x).

Notice that

g′(x) =
1

1 + x
= f(x),

so we have

g(x) =

∫
f(x) dx =

∫
1

1− (−x)
dx =

∫ [ ∞∑
n=0

(−1)nxn

]
dx

=
∞∑
n=0

∫
(−1)nxn dx

= C +
∞∑
n=0

(−1)n

n+ 1
xn+1.

To determine C, we set x = 0 and get that g(0) = 0 = C, so our power series representation is just

g(x) =
∞∑
n=0

(−1)n

n+ 1
xn+1 =

∞∑
n=1

(−1)n−1

n
xn.

Example 8.6.6. Find a power series representation for f(x) = arctan(x)

Notice that

f ′(x) =
1

1 + x2
=

1

1− (−x2)
,

so we have that

f(x) =

∫
1

1− (−x2)
dx =

∫ [ ∞∑
n=0

(−1)nx2n

]
dx

=
∞∑
n=0

∫
(−1)nx2n dx

= C +
∞∑
n=0

(−1)n

2n+ 1
x2n+1.

To find C, we set x = 0 and get that f(0) = 0 = C, so the power series representation is just

f(x) =
∞∑
n=0

(−1)n

2n+ 1
x2n+1.
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Example 8.6.7. The function f(x) =
4

(2− x)2
is the derivative of g(x) =

2x

2− x
. Find a power series

representation for f(x).

g(x) =
2x

2− x
=

2x

2

(
1

1− 1
2
x

)
=

2x

2

∞∑
n=0

(
1

2
x

)n
=
∞∑
n=0

xn+1

2n
.

Differentiating this,

f(x) =
d

dx
[g(x)] =

d

dx

[
∞∑
n=0

xn+1

2n

]

=
∞∑
n=0

d

dx

[
xn+1

2n

]
=
∞∑
n=0

(n+ 1)xn

2n

Example 8.6.8. Find a power series representation for f(x) = ex.

We know that know that f ′(x) = f(x) = ex. So, we can write

ex = f(x) =
∞∑
n=0

cnx
n = c0 + c1x+ c2x

2 + · · ·

ex = f ′(x) =
d

dx

[
∞∑
n=0

cnx
n

]
=
∞∑
n=1

cnnx
n−1 = c1 + c2x+ c3x

2 + · · ·

And so,

c0 = c1

c1 = 2c2

c2 = 3c3

...

cn−1 = ncn

We have that 1 = f(0) = c0, and so using this with the above equalities to compute c1 = 1, c2 = 1
2
,

etc. we see cn = 1
n!

. So series representation is

ex =
∞∑
n=0

xn

n!
.
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8.7 Taylor and Maclaurin Series

Suppose that for |x− a| < R, f(x) has the power series representation

f(x) = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + · · ·

We notice that f(a) = c0, so maybe we can write all of the other coefficients in terms of f . Indeed,

f ′(x) = c1 + 2c2(x− a) + 3c3(x− a)2 + 4c4(x−)3 + · · ·

Now we have that f ′(a) = c1. Again,

f ′′(x) = 2c2 + 6c3(x− a) + 24c4(x− a)2 + 120c5(x− a)3 + · · ·

Now we have that
f ′′(a)

2
= c2. Iterating through consecutive derivatives (and adopting the convention

that f (0)(x) ≡ f(x), we get the following relationship for the coefficients:

cn =
f (n)(a)

n!

Definition. The Taylor series for the function f centered at a is

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n.

The Maclaurin series for the function f is the Taylor series with a = 0

f(x) =
∞∑
n=0

f (n)(0)

n!
xn.

Remark. Our derivation relies on the fact that f(x) has a power series representation. If it does not,
it does not need to be the sum of the Taylor series.

Example 8.7.1. Find the Maclaurin series of the function f(x) = ex and the radius of convergence.

Since f (n)(x) = ex for all n, f (n)(0) = 1 for all n. Thus we get

ex =
∞∑
n=0

xn

n!
.

This matches what we saw in Example 8.6.8 By the ratio test, we can see that it has infinite radius of
convergence (the series converges for all x-values).
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Example 8.7.2. Find the Taylor series expansion of the function f(x) = ln(x) centered at a = 2.

f (0)(a) = ln a

f (1)(a) =
1

a

f (2)(a) = − 1

a2

f (3)(a) =
2

a3

f (4)(a) = − 6

a4

...

f (n)(a) =
(−1)n−1(n− 1)!

an
(for n > 0)

Seeing this pattern, we notice that c0 = ln 2, but every other coefficient has the form

cn =
f (n)(2)

n!
=

(−1)n−1(n− 1)!

n!2n
=

(−1)n−1

n2n
.

Thus the Taylor series expansion is

lnx = ln 2 +
∞∑
n=1

(−1)n−1

n2n
(x− 2)n

Example 8.7.3. Find the Maclaurin series expansion of the function f(x) = sin x.

f (0)(0) = sin 0 = 0

f (1)(0) = cos 0 = 1

f (2)(0) = − sin 0 = 0

f (3)(0) = − cos 0 = −1

f (4)(0) = sin 0 = 0

f (5)(0) = cos 0 = 1

...

So, we notice that the Maclaurin series for sinx is

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · · =

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
.
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Example 8.7.4. Find the Maclaurin series expansion of the function g(x) = cos x.

Since g(x) = f ′(x), we can differentiate the Maclaurin series for sin x from the previous example to
get

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ · · · =

∞∑
n=0

(−1)nx2n

(2n)!
.

Example 8.7.5. Let i be the imaginary unit (so i2 = −1). What sort of relationship do you notice
about the Maclaurin series expansions for eix, cos x, and sinx?

This exploration is left to the reader.

Example 8.7.6. Find the Maclaurin series expansion of the binomial f(x) = (1 + x)k for some fixed
number k.

f (0)(0) = (1 + x)k = 1

f (1)(0) = k(1 + x)k−1 = k

f (2)(0) = k(k − 1)(1 + x)k−2 = k(k − 1)

f (3)(0) = k(k − 1)(k − 2)(1 + x)k−3 = k(k − 1)(k − 2)

...

f (n)(0) = k(k − 1)(k − 2) · · · (k − n+ 1).

So the Maclaurin series for (1 + x)k is

(1 + x)k = 1 + kx+
k(k − 1)

2
x2 +

k(k − 1)(k − 2)

6
x3 + · · ·

=
∞∑
n=0

(
k

n

)
xn.

where here
(
k
n

)
is the notation given to the coefficients. We note that when k and n are both positive

integers satisfying k ≥ n, then
(
k
n

)
is exactly the same as what you may have seen in the contexts of

combinatorics (and thus
(
k
n

)
= 0 for n > k).

Example 8.7.7. Find the Maclaurin series for
2 sin(3x)

x
.

We can make simple modifications to the Maclaurin series for sin x.

sinx =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!

sin(3x) =
∞∑
n=0

(−1)n
(3x)2n+1

(2n+ 1)!

2 sin(3x) = 2
∞∑
n=0

(−1)n
(3x)2n+1

(2n+ 1)!

2 sin(3x)

x
=

1

x
· 2

∞∑
n=0

(−1)n
(3x)2n+1

(2n+ 1)!
= 2

∞∑
n=0

(−1)n
32n+1x2n

(2n+ 1)!
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To recap, below is a list of particularly useful and common Maclaurin series and radii of convergence.

Function Maclaurin Series Radius of Convergence

1

1− x
∞∑
n=0

xn = 1 + x+ x2 + x3 + x4 + · · ·
R = 1

ln(1 + x) ∞∑
n=1

(−1)n+1

n
xn = x− x2

2
+
x3

3
− x4

4
+ · · ·

R = 1

ex ∞∑
n=0

1

n!
xn = 1 + x+

x2

2!
+
x3

3!
+
x4

4!

R =∞

sinx ∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 = x− x3

3!
+
x5

5!
− x7

7!
+ · · ·

R =∞

cosx ∞∑
n=0

(−1)n

(2n)!
x2n = 1− x2

2!
+
x4

4!
− x6

6!
+ · · ·

R =∞

arctanx ∞∑
n=0

(−1)n

2n+ 1
x2n+1 = x− x3

3
+
x5

5
− x7

7
+ · · ·

R = 1

(1 + x)k ∞∑
n=0

(
k

n

)
xn = 1 + kx+

k(k − 1)

2!
x2 + · · ·

R = ∞ if k is a nonnegative
integer,

R = 1 otherwise.
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8.7.1 Taylor Polynomials

Definition. The kth Taylor polynomial for f(x) centered at a is the kth partial sum of the
Taylor series:

Tk(x) =
k∑

n=0

f (n)(a)

n!
(x− a)n

Notice that when k = 1, we have the function

Tk(x) = f(a) + f ′(a)(x− a).

This is just the tangent line approximation of the function f at a! It suggests to us that, as k grows,
the kth Taylor polynomial provides us a better and better approximation of our function values when
x is close to a. Indeed, if we look at the graph of y = ex below and a few Taylor polynomials (centered
at 0).

−2 −1 1 2

2

4

ex

T1(x)

T2(x)

T3(x)

Just as with a tangent line approximation, the center a is important, as your estimation becomes less
accurate if x and a are very far away.

If f(x) is the sum of its Taylor series and Tk(x) is an approximation, then the difference Rk(x) =
f(x)− Tk(x) should tell us the error involved in estimating the value of the function. Indeed, we call
Rk(x) the remainder of the Taylor series, and |Rk(x)| is the (absolute value of the) error.

Example 8.7.8. Use a fifth-degree Taylor polynomial to approximate sin(3.15). Find the error of the
approximation sin(3.15) ≈ T5(3.15).

Since 3.15 is very close to π, we’ll center the Taylor polynomial at a = π.

f (0)(π) = 0

f (1)(π) = −1

f (2)(π) = 0

f (3)(π) = 1

f (4)(π) = 0

f (5)(π) = −1

⇒ T5(x) = −(x− π) +
(x− π)3

3!
− (x− π)5

5!
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So then

sin(3.15) ≈ T5(3.15) = −0.008 407 247 367 148 707 . . .

Checking with our calculator, we have

sin(3.15) = −0.008 407 247 367 148 706 . . .

and so the error is |R5(3.15)| ≈ 1.22258× 10−16.

Another extremely important reason for using these power series (and Taylor series in particular) is
because functions may not have antiderivatives that can be expressed in terms of elementary functions
(simple addition, subtraction, exponents, etc). The following example is a very well-known example
of such a function.

Example 8.7.9. Use the Maclaurin series to evaluate
∫
e−t

2
dt.

Recalling the Maclaurin series for ex, we have

e−t
2

=
∞∑
n=0

(−t2)n

n!
=
∞∑
n=0

(−1)nt2n

n!
.

Thus ∫
e−t

2

dt =

∫ ∞∑
n=0

(−1)nt2n

n!
dt =

∞∑
n=0

∫
(−1)nt2n

n!
dt = C +

∞∑
n=0

(−1)nt2n+1

(2n+ 1)n!
.

Example 8.7.10. We define the (unnormalized) error function erf(x) to be

erf(x) =

∫ x

0

e−t
2

dt

Use a fifth-degree Maclaurin polynomial to approximate erf(1).

From the previous example, we have that

erf(x) =

[
C +

∞∑
n=1

(−1)nt2n+1

n!(2n+ 1)

]x
0

=
∞∑
n=1

(−1)nx2n+1

n!(2n+ 1)

Thus, the fifth-order Maclaurin polynomial is

T5(x) = x− x3

3
+
x5

10

and our approximation of erf(1) is

erf(1) ≈ T5(1) = 1− 1

3
+

1

10
≈ 0.767
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9 Parametric Equations and Polar Coordinates

9.1 Parametric Curves

−1 −0.5 0.5 1

−1

−0.5

0.5

1

A parametric curve C given by x = sin(2t), y = sin(3t).

The graph of the curve above fails to be a function of the form y = f(x), because it fails the vertical
line test, but it may be a reasonable path for an object to travel (maybe a weight attached to a spring
attached to a pendulum, or maybe a bee’s flight path), so we’d like to be able to model it.

Suppose x and y are both functions of a third variable, t (called a parameter), with x = f(t) and
y = g(t) (called parametric equations). We can then plot the points (x, y) = (f(t), g(t)) in the
coordinate plane. As t varies, the point (x, y) = (f(t), g(t)) traces out a curve C (called a parametric
curve).

Example 9.1.1. Sketch the curve given by x = t2 + t, y = t2− t, −2 ≤ t ≤ 2. Indicate with an arrow
the direction in which the curve is traced as t increases.

2 4 6

2

4

6
t (x, y)

−2 (2, 6)

−1 (0, 2)

0 (0, 0)

1 (2, 0)

2 (6, 2)
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Example 9.1.2. Sketch the curve given by x = 3 cos t, y = 3 sin t, for 0 ≤ t ≤ 2π. Indicate with an
arrow the direction in which the curve is traced as t increases.

−2 2

−2

2

t (x, y)

0 (3, 0)

π
2

(0, 3)

π (−3, 0)

3π
2

(0,−3)

2π (3, 0)

The shape appears to be a circle of radius 3. And indeed, we can see this is the case be eliminating
the parameter:

x2 + y2 = 9 cos2 t+ 9 sin2 t = 9(sin2 t+ cos2 t) = 9,

so the equation is exactly that of a circle of radius 3.

Example 9.1.3. Sketch the curve given by x = 3 cos(2t), y = 3 sin(2t), for 0 ≤ t ≤ π. Indicate with
an arrow the direction in which the curve is traced as t increases.

−2 2

−2

2

t (x, y)

0 (3, 0)

π
2

(0, 3)

π (−3, 0)

3π
2

(0,−3)

2π (3, 0)

Once again, the shape appears to be a circle of radius 3. And indeed, we can see this is the case be
eliminating the parameter:

x2 + y2 = 9 cos2(2t) + 9 sin2(2t) = 9,

so the equation is exactly that of a circle of radius 3.

What this example illustrates is that curves are not uniquely parametrized. If thinking about a particle
traveling along these curves, the particle in the second example completes the curve in half the amount
of time (or rather, travels twice as fast).

90



Because curves are not uniquely parametrized, it may be easier to visualize the curve by eliminating
the parameter and obtaining a Cartesian equation of the curve.

Example 9.1.4. Eliminate the parameter from

x = et − 1, y = e2t

to find a Cartesian equation of the curve. Then sketch the curve and indicate with an arrow the
direction in which the curve is traced as the parameter increases.

By rearranging the first equation as et = x+ 1, we have

y = e2t = (et)2 = (x+ 1)2,

which is a parabola. One thing to keep in mind is that et > 0 for all t, so the range of x-values is the
interval (1,∞). Since x is increasing as t increases, the arrows trace the curve from left to right.

−3 −2 −1 1

1

2

3

4

Example 9.1.5. Eliminate the parameter from

x =
√
t+ 1, y =

√
t− 1

to find a Cartesian equation of the curve. Then sketch the curve and indicate with an arrow the
direction in which the curve is traced as the parameter increases.

By rearranging the first equation as t = x2 − 1 and the second as t = y2 + 1 we have

x2 − 1 = y2 + 1 ⇒ x2

2
− y2

2
= 1,

which is a hyperbola. One thing to keep in mind is that the arguments for x(t) and y(t) are only
defined for t ≥ 1, so the range of x-values is the interval (2,∞) and the range of y-values is (0,∞).
Since x is increasing as t increases, the arrows trace the curve from left to right.

−2 2

1

2

3

4
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9.2 Calculus with Parametric Curves

9.2.1 Slopes and Tangent Lines

Suppose that f and g are differentiable functions and we have the parametric curve C given by
x(t) = f(t) and y(t) = g(t) (where y can also be expressed as a differentiable function of x). If we
want to find the tangent line at a point (x, y) on C, we need to find dy

dx
. By an application of the chain

rule, we have

dy

dt
=
dy

dx
· dx
dt

which rearranges to

dy

dx
=

(
dy
dt

)(
dx
dt

) if
dx

dt
6= 0. (9.2.1)

Remark. While dy
dx

has a simple expression in terms of parametric derivatives, it is not quite so straight-

forward to find higher derivatives. To find d2y
dx2

we rewrite Equation 9.2.1 as

d

dx
(y) =

dy

dx
=

dy
dt
dx
dt

=
d
dt

(y)
dx
dt

and then replacing y with dy
dx

yields

d2y

dx2
=

d

dx

(
dy

dx

)
=

d
dt

(
dy
dx

)(
dx
dt

) . (9.2.2)

Example 9.2.1. Find the equation of the tangent line through the point where t = 3
4

of the parametric
curve given by x = cos(πt), y = sin(πt), 1

4
≤ t ≤ 5

4
. At what point is the slope horizontal? At what

point is the slope vertical?

−1 −0.5 0.5 1

−1

−0.5

0.5

1

−1 −0.5 0.5 1

−1

−0.5

0.5

1

We have that dx
dt

= −π sin(πt) and dy
dt

= π cos(πt), so the slope of the tangent line is

dy

dx

∣∣∣∣
t= 3

4

=
π cos

(
3π
4

)
− sin

(
3π
4

) = 1

and passes through the point
(
x(3

4
), y(3

4
)
)

= (−
√

2
2
,
√

2
2

), so the equation for this line is

y = x+
√

2.

Recall that the tangent line is horizontal if the slope is 0, i.e., if dy
dt

∣∣
t

= 0, and vertical if dx
dt

∣∣
t

= 0.

Thus we have a horizontal tangent line when t = 1
2

and a vertical tangent line when t = 1.
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Example 9.2.2. For the parametric curve given by x =
√
t, y = 1

4
(t2 − 4), t ≥ 0, find the slope and

concavity at the point (2, 3).

We have that dx
dt

= 1
2
√
t

and dy
dt

= t
2
. Note also that

(x(t), y(t)) = (2, 3) when t = 4. So, the first derivative
is

dy

dx
=

t
2
1

2
√
t

= t3/2.

and the slope at the point where t = 4 is

dy

dx

∣∣∣∣
t=4

= 43/2 = 8.

The second derivative is

d2y

dx2
=

d
dt

[
t3/2
]

1
2
√
t

=
3
√
t

2
1

2
√
t

= 3t,

and the concavity at this point where t = 4 is thus

d2y

dx2

∣∣∣∣
t=4

= 3(4) = 12

2 4

2

4

Example 9.2.3. The prolate cycloid given by x = 2t− π sin t and y = 2− π cos t crosses itself at the
point (0, 2). Find the equations of both tangent lines at this point.

We find that (x(t), y(t)) = (0, 2) when t = −π
2

and

t = π
2
. We have that dx

dt
= 2 − π cos t and dy

dx
= π sin t.

The slope at t = −π
2

is thus

dy

dx

∣∣∣∣
t=−π/2

=
π sin

(
−π

2

)
2− π cos

(
−π

2

) = −π
2

and the equation of the tangent line here is y = −π
2
x+2.

The slope at t = π
2

is

dy

dx

∣∣∣∣
t=−π/2

=
π sin

(
π
2

)
2− π cos

(
π
2

) =
π

2

and the equation of the tangent line here is y = π
2
x+ 2.
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5
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9.2.2 Arc Length

We saw how to compute arc length in Section 7.4. We can equivalently discuss arc length in terms of
parametric functions thanks to the following theorem

Theorem 9.2.4. If a curve C is described by the parametric equations x = f(t), y = g(t), α ≤ t ≤ β
where f ′ and g′ are continuous on [α, β] and C is transversed exactly once on this interval, then the
length of C is

L =

∫ β

α

√(
dx

dt

)2

+

(
dy

dt

)2

dt =

∫ β

α

√
[f ′(t)]2 + [g′(t)]2 dt.

Proof. See the text.

Example 9.2.5. Let r > 0 be some real number and consider the curve given by x = r cos t, y = r sin t.
Find the arc length of this curve for 0 ≤ t ≤ 2π.

Applying the arc length formula,

L =

∫ 2π

0

√(
dx

dt

)2

+

(
dy

dt

)2

dt

=

∫ 2π

0

√
r2 sin2 t+ r2 cos2 t dt

=

∫ 2π

0

r dt

= [rt]2π0 = 2πr.

This is just the formula for the circumference of a circle of radius r, as expected.
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Example 9.2.6. A circle of radius 1 rolls around the circumference of a larger circle of radius 4. The
epicycloid traced by a point on the circumference of the smaller circle is given by x = 5 cos t− cos(5t),
y = 5 sin t − sin(5t). Find the distance traveled by the point in one complete trip about the larger
circle.

−5 5

−5

5

We appeal to symmetry and integrate the first quadrant’s curve only, and then multiply the answer
by 4:

L = 4

∫ π/2

0

√
[f ′(t)]2 + [g′(t)]2 dt

= 4

∫ π/2

0

√
[−5 sin t+ 5 sin(5t)]2 + [5 cos t− 5 cos(5t)]2

= 4

∫ π/2

0

√
25− 50 sin t sin(5t) + 25− 50 cos t cos(5t) dt

= 20

∫ π/2

0

√
2− 2 sin t sin(5t)− 2 cos t cos(5t) dt

= 20

∫ π/2

0

√
2− 2 cos(4t) dt (angle sum identity)

= 20

∫ π/2

0

√
4 sin2(2t) dt (double-angle identity)

= 20

∫ π/2

0

2 sin(2t) dt

= −20 [cos(2t)]π/20 = 40.
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9.2.3 Areas

Recall that the area under a curve y = F (x) from x = a to x = b is given by

A =

∫ b

a

y dx =

∫ b

a

F (x) dx.

If our curve is parametrized as x = f(t), y = g(t), and we have that α ≤ t ≤ β with a = f(α) and
b = f(β), then

dx = f ′(t) dt

and the substitution rule for definite integrals gives us the area under a parametric curve as

A =

∫ b

a

y dx =

∫ β

α

g(t)f ′(t) dt.

If instead we have that a = f(β) and b = f(α) then the area under this parametric curve is∫ α

β

g(t)f ′(t) dt.

It’s worth noting that we have to make some additional assumptions for this area to be unambiguous
and for the integral to work. In particular, we need to make sure that the curve is traced out only once
on this interval (otherwise we could be adding/subtracting extra area that isn’t really there), and we
also need to make sure that the curve doesn’t fail the vertical line test on this interval.

Example 9.2.7. Find the area below the parametric curve x = t− 1
t
, y = t+ 1

t
, 1 ≤ t ≤ 3.

−4 −2 2 4

1

2

3

4

Since x′(t), y′(t) are not 0 on this interval, the curve never traces itself out more than once. Plotting the
portion of curve above, we can see that it also passes the vertical line test. So we integrate according
to the definition above. Since x′(t) = 1 + 1

t2
, we get

A =

∫ 3

1

(
t+

1

t

)(
1 +

1

t2

)
dt

=

∫ 3

1

t+
2

t
+

1

t3
dt

=

[
1

2
t2 + 2 ln |t| − 1

2t2

]3

1

=
40

9
+ ln 9 ≈ 6.6417.
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If we relax the condition that our curve C pass the vertical line test and assume that C is a closed
loop, then we can actually compute the area enclosed by the loop.

Example 9.2.8. Compute the area of the loop enclosed by the curve x = t3 − 4t, y = 2t2 on the
interval −2 ≤ t ≤ 2.

−4 −2 2 4

2

4

6

8

Notice that the “upper half” of this curve is traversed from left to right as t increases. This means
that integrating from t = −2 to t = 2 will result in a positive area. So, computing x′(t) = 2t2 − 4, we
get

A =

∫ 2

−2

(2t2)(2t2 − 4) dt

=

∫ 2

−2

4t4 − 8t2 dt

=

[
4

5
t5 − 8

3
t3
]2

−2

=
128

15
≈ 8.5333

Example 9.2.9. Compute the area of the circle of radius 1, centered at (x, y) = (2, 2), using the
parameterization x = 2 + cos(t), y = 2 + sin(t).

This exercise is left to the reader. We note, however, that the “upper half” of the circle is traversed
backwards (that is, x is decreasing), and so you should choose your limits of integration accordingly.
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9.3 Polar Coordinates

Let (x, y) be some point in the Cartesian plane and let r be the length of the line segment from the
origin (0, 0) to (x, y). Also, let θ be the angle from the positive x-axis to this line segment (traversing
counter-clockwise). It’s not hard to see that, when (x, y) is not the origin, this r-value and this θ-value
are unique to this (x, y) point, so rather than refer to the point in terms of the ordered pair (x, y), we
could refer to them in terms of (r, θ). This is the basis for polar coordinates, which is a very useful
re-parametrization of the Cartesian plane. So how do we pass between them?

x

y
r

From trigonometry, we see that we have the following relationships

x = r cos θ, r =
√
x2 + y2,

y = r sin θ, tan θ =
y

x
.

Remark. Since arctanx only has range (−π
2
, π

2
), you have to be aware of the quadrant in which your

point (x, y) lies and may have to add multiples of π to get the correct angle.

Example 9.3.1. Convert the point (1, π
2
) from polar coordinates to Cartesian coordinates.

We have that

x = r cos θ = 1 cos
(π

2

)
= 0,

y = r sin θ = 1 sin
(π

2

)
= 1,

so, in Cartesian coordinates, we have (0, 1).

Example 9.3.2. Convert the point (−
√

3,−1) from Cartesian coordinates to polar coordinates.

We have that

r =

√
(−
√

3)2 + (−1)2 = 2,

tan θ =
−1

−
√

3
⇒ θ =

7π

6
,

so, in polar coordinates, we have
(
2, 7π

6

)
.
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Definition. A polar function is a function of the form r = f(θ).

We graph the polar function r = f(θ) is the same we might graph y = f(x): plot all values (r, θ) for
which r = f(θ).

Example 9.3.3. Sketch a graph of the function r = 2.

θ x = r cos(θ) y = r sin(θ)

0 2 0

π
4

√
2

√
2

π
2

0 2

3π
4

−
√

2
√

2

π −2 0

5π
4

−
√

2 −
√

2
3π
2

0 −2

7π
4

√
2 −

√
2

−2 −1 1 2

−2

−1

1

2

Example 9.3.4. Sketch a graph of the polar function r = 2 sin θ. Find a Cartesian equation for this
curve.

θ x = r cos(θ) y = r sin(θ)

0 0 0
π
4

1 1
π
2

0 2
3π
4

−1 1

π 0 0
5π
4

1 1
3π
2

0 2
7π
4

−1 1

−1 −0.5 0.5 1

0.5

1

1.5

2

By some clever rearranging,

r = 2 sin θ

r2 = 2r sin θ

r2 = 2y

x2 + y2 = 2y

x2 + y2 − 2y + 1 = 1

x2 + (y − 1)2 = 1

we get the equation for the circle of radius 1, centered at (0, 1).
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Example 9.3.5. Sketch a graph of the polar function r = 1 + cos θ.

θ x = r cos(θ) y = r sin(θ)

0 2 0

π
4

1
2

+
√

2
2

1
2

+
√

2
2

π
2

0 1

3π
4

1
2
−
√

2
2

−1
2

+
√

2
2

π 0 0

5π
4

1
2
−
√

2
2

1
2
−
√

2
2

3π
2

0 −1

7π
4

1
2

+
√

2
2

−1
2
−
√

2
2

1 2

−1

1

9.3.1 Tangents to Polar Curves

If r = f(θ), then we can regard θ as a parameter and we get

dy

dx
=

dy
dθ
dx
dθ

=
d
dθ

[r sin θ]
d
dθ

[r cos θ]
=

dr
dθ

sin θ + r cos θ
dr
dθ

cos θ − r sin θ
.

Example 9.3.6. Find the slope of the tangent line to r = 1 + cos θ when θ = π
6
.

1 2

−1

1

We have that dr
dθ

= − sin θ, so the slope of the tangent line when θ = π
6

is

dy

dx

∣∣∣∣
θ=π/6

=
− sin(π

6
) sin(π

6
) + (1 + cos(π

6
)) cos(π

6
)

− sin(π
6
) cos(π

6
)− (1 + cos(π

6
)) sin(π

6
)

= −1.
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Example 9.3.7. Find the equation of the tangent line to r = sin(2θ) at θ = −π
4

.

−1 −0.5 0.5 1

−1

−0.5

0.5

1

We have that dr
dθ

= 2 cos(2θ), so the slope of the tangent line when θ = −π
4

is

dy

dx

∣∣∣∣
θ=−π/4

=
2 cos(−π

2
) sin(−π

4
) + sin(−π

2
) cos(−π

4
)

2 cos(−π
2
) cos(−π

4
)− sin(−π

2
) sin(−π

4
)

= 1.

When θ = −π
4
, we have that (x, y) =

(
−
√

2
2
,
√

2
2

)
. Thus, the line with slope 1 passing through the

point
(
−
√

2
2
,
√

2
2

)
has equation

y = x+
√

2
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9.4 Areas and Lengths in Polar Coordinates

9.4.1 Area in Polar Coordinates

A sector of a circle of radius r spanned by angle θ has area A = πr2 · θ
2π

= 1
2
r2θ.

θ
r

Just as we could use rectangles to approximate the area under the curve of a function in cartesian
coordinates, we can use sectors to approximate the region enclosed by a polar curve.

a

b si

Given the polar curve r = f(θ) from θ = a to θ = b, we approximate the region with n sectors. The
area of each sector si spanned by angle θi is 1

2
[f(θi)]

2θi. And thus the approximate area of the polar
region is

A ≈
n∑
i=1

1

2
[f(θi)]

2θi

As n increases, the size of each sector decreases and our approximation gets better and better. Thus,
we take a limit as n→∞ to get that our exact area is

A = lim
n→∞

n∑
i=1

[f(θi)]
2θi =

∫ b

a

1

2
[f(θ)]2 dθ.
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Example 9.4.1. Find the area of one leaf of the rose r = sin(3θ).

Notice that 0 ≤ θ ≤ π
3

traces out one leaf of the rose. We
thus compute the area

A =

∫ π/3

0

1

2
[sin(3θ)]2 dθ

=
1

4

∫ 2

0

1− cos(6θ) dθ

=
1

4

[
1− 1

6
sin(6θ)

]π/3
0

=
π

12
.

−1 −0.5 0.5 1

−1

−0.5

0.5

1

We always want to “sweep” the area counter-clockwise, so it’s important that we choose our limits a
and b so that a ≤ θ ≤ b.

Example 9.4.2. Find the area of the inner loop of the limaçon r = 1− 2 cos θ.

The curve passes through itself at the origin, which corresponds to θ = π
3

and θ = 5π
3

. However,
when we integrate, we need to choose the interval

[
−π

3
, π

3

]
to make sure we compute the correct region

(compare Figure 9.4.2 and Figure 9.4.1).

As such, we have that the area is given by

A =

∫ π/3

−π/3

1

2
(1− 2 cos θ)2 dθ

=

∫ π/3

−π/3

1

2
− 2 cos θ + 2 cos2 θ dθ

=

∫ π/3

−π/3

1

2
− 2 cos θ + (1 + cos(2θ)) dθ

=

[
3

2
θ − 2 sin θ +

1

2
sin(2θ)

]π/3
−π/3

= π − 3
√

3

2
.

−3 −2 −1 1

−2

−1

1

2

−3 −2 −1 1

−2

−1

1

2

Figure 9.4.1: Area when integrating from −π
3

to π
3

.

−3 −2 −1 1

−2

−1

1

2

Figure 9.4.2: Area when integrating from π
3

to 5π
3

.
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Just as in the case of Cartesian coordinates, the area in between two polar curves is the area of the
outer polar region minus the area of the inner polar region. We note that we again have to verify that
the angle measures in our limits of integration are correct for each curve separately.

Example 9.4.3. Find the area of the region inside the curve r = 2 and outside the curve r = 3+2 cos θ.

−2 2 4

−2

2

The two curves intersect at (r, θ) = (2, 2π
3

) and (r, θ) = (2, 4π
3

). The area inside r = 2 from this region
is given by

A1 =

∫ 4π/3

2π/3

1

2
(2)2 dθ =

4π

3

and the area inside r = 3 + 2 cos θ from this region is given by

A2 =

∫ 4π/3

2π/3

1

2
(3 + 2 cos θ)2 dθ = −11

√
2

2
+

11π

3
.

Therefore the area of the region between the two curves is

A = A1 − A2 = −7π

3
+

11
√

2

2
.

9.4.2 Arc Length in Polar Coordinates

Recall that for a parametrized curve (x(t), y(t)), the length of the curve on the interval a ≤ t ≤ b is
given by

L =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt

In the case where t = θ and r = f(θ), we have

x(θ) = r cos θ = f(θ) cos θ

y(θ) = r sin θ = f(θ) sin θ

and by the product rule,

dx

dθ
= f ′(θ) cos θ − f(θ) sin θ

dy

dθ
= f ′(θ) sin θ + f(θ) cos θ.
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After working with the algebra and canceling a few terms, we get that(
dx

dθ

)2

+

(
dy

dt

)2

= [f ′(θ)]
2

+ [f(θ)]2 ,

and thus, in polar coordinates, arc length is given by

L =

∫ b

a

√
[f ′(θ)]2 + [f(θ)]2 dθ.

Example 9.4.4. Compute the arc length of the curve r = 2− 2 cos θ for 0 ≤ θ ≤ 2π.

We have that r′ = 2 sin θ, and thus the arc length integral is

L =

∫ 2π

0

√
[r]2 + [r′]2 dθ

=

∫ 2π

0

√
4− 8 cos θ + 4 cos2 θ + 4 sin2 θ dθ

=

∫ 2π

0

√
8− 8 cos θ dθ

=

∫ 2π

0

√
16 sin2

(
θ

2

)
dθ

=

∫ 2π

0

4 sin

(
θ

2

)
dθ

=

[
−8 cos

(
θ

2

)]2π

0

= 16.

9.4.3 A fun application of polar coordinates

Note: This portion formally relies on some techniques from Calculus III. I will attempt to give intuition
for each of the steps and omit formal justification.

Example 9.4.5. Compute

∫ ∞
0

e−x
2

dx.

We saw before in Example 8.7.10 that it was very difficult to exactly evaluate the error function and
we generally had to resort to approximations. However, if we want to evaluate erf(x) as x → ∞, we
can get an exact value with only some cleverness. First we’ll suppose that

J =

∫ ∞
0

e−x dx

is a real number. Since it is real, we can square it (and since x is just a dummy variable, there’s no
issue with using y for one of the integrals). What’s more, since integrals are linear, we can move the
constant I inside of the integral.

J2 = J

∫ ∞
0

e−x
2

dx =

∫ ∞
0

e−x
2

J dx =

∫ ∞
0

e−x
2

(∫ ∞
0

e−y
2

dy

)
dx.
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Since e−x
2

is not a function of y, it’s effectively a constant when integrating with respect to y, so we
can move it inside the integral

J2 =

∫ ∞
0

e−x
2

(∫ ∞
0

e−y
2

dy

)
dx

=

∫ ∞
0

(∫ ∞
0

e−x
2

e−y
2

dy

)
dx

=

∫ ∞
0

(∫ ∞
0

e−(x2+y2) dy

)
dx.

Notice now that we’re integrating over all pairs (x, y) where 0 ≤ x < ∞ and 0 ≤ y < ∞. This is
exactly the first quadrant (QI) in the Cartesian plane. In polar coordinates, this plane is described
by all pairs (r, θ) where 0 ≤ r <∞ and 0 ≤ θ ≤ π

2
. Since e−x

2−y2 = e−r
2
, it seems reasonable that we

might want to change to polar coordinates.

The main technical issue is then figuring out how to replace dx and dy correctly so that we can work
with dr and dθ. As it turns out, dx dy = r dr dθ, and the idea behind it is this: an infinitesimal
rectangle in the plane with sides dx and dy has infinitesimal area dA = dx · dy, and if you try to
describe this same area in polar coordinates, you end up getting that dA = r · dr · dθ. Thus

J2 =

∫ ∞
0

(∫ ∞
0

e−(x2+y2) dy

)
dx

=

∫ π/2

0

(∫ ∞
0

e−r
2

r dr

)
dθ

=

∫ π/2

0

[
−1

2
e−r

2

]∞
0

dθ

=

∫ π/2

0

1

2
dθ

=

[
1

2
θ

]π/2
0

=
π

4

⇒ I =

√
π

2
.
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