1. a. Our goal is to minimize the distance from $(2,1)$ to the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$. Recall the distance, z, from $(2,1)$ to a point (x, y) on the ellipse satisfies $z^{2}=(x-2)^{2}+(y-1)^{2}$. In particular, with implicit differentiation, we get

$$
\begin{equation*}
\frac{d z}{d x}=\frac{(x-2)+(y-1) \frac{d y}{d x}}{z} \tag{1}
\end{equation*}
$$

Using implicit differentiation on our ellipse equation, we also see that

$$
\frac{d y}{d x}=-\frac{9 x}{25 y}
$$

so substituting this into Equation 1, we get

$$
\begin{equation*}
\frac{d z}{d x}=\frac{(x-2)+\left(-\frac{9 x}{25}+\frac{9 x}{25 y}\right)}{z}=\frac{\frac{16 x}{25}+\frac{9 x}{25 y}-2}{z} \tag{2}
\end{equation*}
$$

Rearranging to solve for y in the equation of the ellipse, we have

$$
y=3 \sqrt{1-\frac{x^{2}}{25}}
$$

So, setting Equation 2 equal to 0, we see that it suffices to solve for where the numerator is 0 . Hence

$$
\begin{aligned}
0 & =\frac{16 x}{25}+\frac{9 x}{25 y}-2 \\
0 & =\frac{16 x}{25}+\frac{3 x}{25 \sqrt{1-\frac{x^{2}}{25}}}-2 \\
2-\frac{16 x}{25} & =\frac{3 x}{25 \sqrt{1-\frac{x^{2}}{25}}} \\
\left(2-\frac{16 x}{25}\right)^{2} & =\frac{9 x^{2}}{625-25 x^{2}} \\
\left(2-\frac{16 x}{25}\right)^{2}\left(625-25 x^{2}\right) & =9 x^{2} \\
\left(2-\frac{16 x}{25}\right)^{2}\left(625-25 x^{2}\right)-9 x^{2} & =0 \\
-\frac{256}{25} x^{4}+64 x^{3}+147 x^{2}-1600 x+2500 & =0 .
\end{aligned}
$$

Using our favorite computer algebra system, we have that the only positive real solutions to this quartic equation is $x \approx 2.56478$, whence $y \approx 2.57524$.
Now that we know what point the normal line passes through, we get that the equation for this normal line (with everything rounded to two decimal places is

$$
\begin{align*}
y-1 & =\frac{2.57524-1}{2.56478-2}(x-2) \tag{3}\\
\Rightarrow \quad y & =2.79 x-4.58 \tag{4}
\end{align*}
$$

MAT265 Bonus Homework B (Solutions)

b. Reflecting Equation 4 about the y-axis, the equation of the line passing through $(-p, q)$ is

$$
\begin{equation*}
y=-2.79 x-4.58 \tag{5}
\end{equation*}
$$

Reflecting Equation 5 about the x-axis, the equation of the line passing through $(-p,-q)$ is

$$
\begin{equation*}
y=2.79 x+4.58 \tag{6}
\end{equation*}
$$

Reflecting Equation 6 about the y-axis, the equation of the line passing through $(p,-q)$ is

$$
y=-2.79 x+4.58
$$

