1. Recall that $a(t)=s^{\prime \prime}(t)$. Taking two antiderivatives (in their most general forms), we get

$$
\begin{aligned}
& a(t)=12 t^{2}+6 t-6 \\
& v(t)=4 t^{3}+3 t^{2}-6 t+C_{1} \\
& s(t)=t^{4}+t^{3}-3 t^{2}+C_{1} t+C_{2}
\end{aligned}
$$

Since $s(0)=4$, we see that $C_{2}=4$. And since $s(1)=2$, we get that $C_{1}=-1$. So our position equation is

$$
s(t)=t^{4}+t^{3}-3 t^{2}-t+4
$$

2. a. We're partitioning the interval $[0,2]$ into 4 rectangles, so $\Delta x=\frac{2-0}{4}=0.5$. We have then that

$$
x_{0}=0, \quad x_{1}=0.5, \quad x_{2}=1, \quad x_{3}=1.5, \quad x_{4}=0
$$

For a right endpoint estimate, we have

$$
\begin{aligned}
R_{4} & =\sum_{i=1}^{4} f\left(x_{i}\right) \Delta x \\
& =f\left(x_{1}\right)(0.5)+f\left(x_{2}\right)(0.5)+f\left(x_{3}\right)(0.5)+f\left(x_{4}\right)(0.5) \\
& \approx(1.936)(0.5)+(1.732)(0.5)+(1.323)(0.5)+(0)(0.5) \\
& \approx 2.496
\end{aligned}
$$

This is an underestimate.
b. We're partitioning the interval $[0,2]$ into 4 rectangles, so $\Delta x=\frac{2-0}{4}=0.5$. We have then that

$$
x_{0}=0, \quad x_{1}=0.5, \quad x_{2}=1, \quad x_{3}=1.5, \quad x_{4}=0
$$

For a left endpoint estimate, we have

$$
\begin{aligned}
L_{4} & =\sum_{i=1}^{4} f\left(x_{i-1}\right) \Delta x \\
& =f\left(x_{0}\right)(0.5)+f\left(x_{1}\right)(0.5)+f\left(x_{2}\right)(0.5)+f\left(x_{3}\right)(0.5) \\
& \approx(2)(0.5)+(1.936)(0.5)+(1.732)(0.5)+(1.323)(0.5) \\
& \approx 3.496
\end{aligned}
$$

This is an overestimate.
3. $\int_{-\pi / 2}^{3 \pi / 2} \frac{\sin x}{x} d x$
4. $\int_{-1}^{1} \frac{x}{1+x^{2}} d x$

MAT265 Homework 12 (Solutions)

5.

Setting $y=-\sqrt{144-(x-1)^{2}}$, we see that $y^{2}=144-(x-1)^{2}$, which rearranges to

$$
(x-1)^{2}+y^{2}=144
$$

The function we're looking at is just the bottom half of the circle of radius 12 centered at $(1,0)$ (hence a negative signed area). Thus

$$
\int_{-11}^{13}-\sqrt{144-(x-1)^{2}} d x=-\frac{1}{2} \pi(12)^{2}=-72 \pi
$$

