1. a. The graph of the derivative is positive for $(4,6)$ and $(8, \infty)$, so f is increasing on both of these intervals.
b. Since $f^{\prime}(x)=0$ for $x=4,6,8$ and the derivative switches sign at each of these, by the First Derivative Test, $x=4$ and $x=8$ are local minima; $x=8$ is a local maximum.
c. The graph is increasing on $(-\infty, 2.1283),(3.0312,5.1342)$, and $(7.3063, \infty)$, so the function is concave upward on all of these intervals. The graph is decreasong on $(2.1283,3.0312)$ and (5.1342, 7.3063), so the function is concave downward on these intervals.
d. By the concavity test, using the information for part (c), we have that inflection points occur at $x=2.1283, x=3.0312, x=5.1342$, and $x=7.3063$.
2. a. Taking the first derivative, we have

$$
f^{\prime}(x)=36+6 x-6 x^{2}=6(3-x)(2+x)
$$

Using our fa $f^{\prime}(x)=0$, we see that we have critical points at $x=-2$ and $x=3$. Testing values in between these points, we see that $f^{\prime}(x)<0$ on $(-\infty,-2)$ and $(3, \infty) ; f^{\prime}(x)>0$ on $(-2,3)$. Thus f is decreasing on $(-\infty,-2)$ and $(3, \infty) ; f$ is increasing on $(-2,3)$.
b. By the First Derivative Test and part (a), we have a local maximum at $x=3$ with value 81 and a local minimum at $x=-3$ with value -44 .
c. Taking another derivative, we have

$$
f^{\prime \prime}(x)=6-12 x=6(1-2 x)
$$

so $f^{\prime \prime}(x)=0$ at $x=\frac{1}{2}$. Testing values on either side of this point, we have that $f^{\prime \prime}(x)<0$ on $\left(-\infty, \frac{1}{2}\right)$ and $f^{\prime \prime}(x)>0$ on $\left(\frac{1}{2}, \infty\right)$. Thus f is concave downward on $\left(-\infty, \frac{1}{2}\right)$ and concave upward on $\left(\frac{1}{2}, \infty\right)$. This means that we have an inflection point at $x=\frac{1}{2}$.
d.

3. a.

b. The volume of the box is given by $V=x y^{2}$
c. Since the cardboard is $4 \mathrm{ft} \times 4 \mathrm{ft}$, we have $2 x+y=4$.
d. Rearranging to solve for y, we get $y=4-2 x$. Thus

$$
V=x y^{2}=x(4-2 x)^{2}=4 x^{3}-16 x^{2}+16 x
$$

e. We see that $0 \leq x \leq 2$, but since it's easy to see that the box will have 0 volume if $x=0$ or $x=2$, then we're really looking to find a maximum value on (0,2), i.e., we're looking to find a local max. So

$$
V^{\prime}(x)=12 x^{2}-32 x+16=4\left(3 x^{2}-8 x+4\right)=4(3 x-2)(x-2)
$$

$V^{\prime}(x)=0$ on the interval $(0,2)$ precisely when $x=\frac{2}{3}$, and this corresponds to a maximum with value $\frac{128}{27} \approx 4.7407 \mathrm{ft}^{3}$.
4.

We know that

$$
\begin{aligned}
y & =2 x \quad \text { and } \\
x y z & =15 \Rightarrow z=\frac{15}{x y} \Rightarrow z=\frac{15}{2 x^{2}} .
\end{aligned}
$$

The base costs $14(x y)$, two of the sides cost $7(x z)$ each, and the other two sides cost $7(y z)$ each. Altogether, the cost is

$$
C=14 x y+2 \cdot 7 x z+2 \cdot 7 y z=14 x(2 x)+14 x\left(\frac{15}{2 x^{2}}\right)+14(2 x)\left(\frac{15}{2 x^{2}}\right)=\frac{28 x^{3}+315}{x} .
$$

We're now looking to minimize this function on the interval $(0, \infty)$. Taking the derivative, we get

$$
C^{\prime}(x)=\frac{56 x^{3}-315}{x^{2}}
$$

which has a critical point at $x=\sqrt[3]{\frac{315}{56}} \approx 1.7784$. This point is a minimum, and the corresponding value is $\$ 265.68$.
5. Let (x, y) be a point on $y=x^{4}$. The distance from $(0,7)$ to (x, y) is given by

$$
z=\sqrt{(x-0)^{2}+(7-y)^{2}}=\sqrt{x^{2}+\left(7-x^{4}\right)^{2}}
$$

To minimize, we take the derivative to get

$$
z^{\prime}(x)=\frac{2 x+2\left(7-x^{4}\right)\left(4 x^{3}\right)}{\sqrt{x^{2}+\left(7-x^{4}\right)^{2}}}
$$

With our favorite computer algebra system, we see that we have critical points at $x=0$, $x \approx \pm 0.189$, and $x \approx \pm 1.621$. However, only $x \approx \pm 1.621$ correspond to local minima. Thus the points $(\pm 1.621,6.904)$ are the closest points on $y=x^{4}$
6. Let x be the distance from the wall to the base of the ladder, and y the height from the ground to the top of the ladder resting on the wall (as in the picture below).

By similar triangles, we have

$$
\frac{y}{x+5}=\frac{10}{x} \Rightarrow y=\frac{10 x+50}{x}
$$

With the Pythagorean Theorem, the length of the ladder is

$$
z=\sqrt{(5+x)^{2}+y^{2}}=\sqrt{(5+x)^{2}+\left(\frac{10 x+50}{x}\right)^{2}} .
$$

Certainly we need $x>0$, so to minimize the length of the ladder on the interval $(0, \infty)$, we take the derivative to get

$$
z^{\prime}(x)=\frac{2(5+x)+2\left(\frac{10 x+50}{x}\right)\left(-\frac{50}{x^{2}}\right)}{\sqrt{(5+x)^{2}+\left(\frac{10 x+50}{x}\right)^{2}}}=\frac{(x+5)\left(x^{3}-500\right)}{x^{3} \sqrt{(5+x)^{2}+\left(\frac{10 x+50}{x}\right)^{2}}} .
$$

The only critical point for z in our interval is thus $x=\sqrt[3]{500} \approx 7.937$, which corresponds to a minimum with value 20.810 ft .

