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MAT265 HOMEWORK 10 (SOLUTIONS)

f is a polynomial, so it is continuous and differentiable on all of R, and in particular, is
continuous on [—2,2| and differentiable on (—2,2). Thus, f satisfies the hypotheses of the
Mean Value Theorem (MVT). By MVT, there exists ¢ in (—2,2) such that
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f is continuous on [0,00) and differentiable on (1,00), so in particular, it is continuous on
[1,8] and differentiable on (1,8), thus satisfying the hypotheses for MVT. By MVT, there
exists ¢ in (1, 8) so that
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Indeed, the average rate of change on [0,6] is 0 and there does not exist a ¢ in the whole
domain of f where f’(c) = 0. So there cannot exist a ¢ for which

f(6) — f(0)
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which rearranges to show that there cannot exist a ¢ in the domain of f for which

f(6) = f(0) = f'(c)(6 —0).
This does not contradict MV'T because it does not apply: f is not differentiable at z = 3, so
it does not satisfy the hypotheses of MVT on the interval [0, 6].

We're given that f’ exists for all real numbers, so in particular, f is continuous on [0, 8] and
differentiable on (0,8). By MVT we have that there exists a ¢ in [0, 8] for which
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Using this equality and the bounded property of f’, we have

5. a. Since the curve shown is the graph of f, we look for places where the concavity changes.
This happens at x &~ 3.7753 and x ~ 6.2247.

b. Since the curve shown is the graph of f’, we look for places where the graph changes
from increasing to decreasing (and vice-versa). This happens at z ~ 2.8787, x = 5, and
x =~ 7.1213.

c. Since the curve shown is the graph of f”, we look for places where the sign changes. This
happens at x = 2 and x = 8.
6. a. fisincreasing on (—oo,1) and (5,6); f is decreasing on (1,5) and (6, c0).
b. By the first derivative test, f has a local maximum at x = 1 and = = 6; f has a local
minimum at z = 5.

c. The second derivative of f is the first derivative of this graph. So f is concave up on
(1.5677,3.0455) and (4.1736, 5.6133); f is concave down on (—o0, 1.5677), (3.0455,4.1736)
and (5.6133, 00).

d. From the previous part, we see that f has inflection points at = =~ 1.5677, x ~ 3.0455,
xr ~ 4.1736, and x ~ 5.6133.

e. Assuming that f(0) = 0, the graph of f is below:
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7. For C(x) = 2'/3(x + 4),
a. Taking the derivative, we have that

4 4 4o + 4
1 _ *,.1/3 = .—2/3 _
C'(x) = 3% + R =3
Our critical points are thus x = —1 and x = 0. Testing values between these numbers,

we have that f'(z) < 0 on (—o0,—1), f'(x) > 0 on (—1,0), and f'(z) > 0 on (0,00).
Thus f is increasing on (—1,0); f is decreasing on (—oo, —1) and (0, c0).
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b. By the first derivative test in part (a), we have a local minimum at z = —1.

c. Taking the second derivative, we have

_A(3z*%) — (dw 4+ 4)2271 4x -8
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C"(x) = 0 when z = 2 and is undefined at 0. Testing points in between these numbers,
we have that f”(z) > 0 on (—o00,0), f”(x) <0 on (0,2), and f”(x) > 0 on (2,00). Thus
f is concave upward on (—o0,0) and (2,00); f is concave downward on (2,00). Thus
x =0 and x = 2 are inflection points for f.
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8. We have that f has critical points at © = —7, —3,4, 6. Testing values in between these points,
we get that f'(z) > 0 on (—oo,—7), f'(z) > 0 on (=7,-3), f'(z) < 0on (—3,4), f'(x) >0
on (4,6), and f'(x) > 0 on (6,00). So f is increasing on (—oo,7), (=7, —3), (4,6) and (6, c0).



