1. Recall that $\frac{d}{d x}|x|=\frac{x}{|x|}$. From the chain rule we have that

$$
g^{\prime}(t)=\frac{16 t-12}{|3-4 t|}
$$

This derivative is always nonzero and is undefined for $t=\frac{3}{4}$. So, our only critical point is $t=\frac{3}{4}$.
2. By the power rule,

$$
h^{\prime}(x)=-\frac{1}{3} x^{-4 / 3}+\frac{2}{3} x^{-5 / 3}=\frac{-x^{1 / 3}+2}{3 x^{5 / 3}} .
$$

We see that $h^{\prime}(x)=0$ when $x=8$ and h^{\prime} is undefined for $x=0$. However, 0 is not in the domain of h, so the only critical point is as 8 .
3. By the product rule, we have that

$$
f^{\prime}(x)=-5 x^{-6} \ln x+\frac{x^{-5}}{x}=\frac{-5 \ln x}{x^{6}}+\frac{1}{x^{6}}=\frac{-5 \ln x+1}{x^{6}} .
$$

We see that $f^{\prime}(x)=0$ for $x=e^{1 / 5}$ and f^{\prime} is undefined at $x=0$. However, 0 is not in the domain of f, so the only critical point is as $x=e^{1 / 5}$.
4. Taking the first derivative, we have

$$
f^{\prime}(t)=1-\frac{1}{2} \csc ^{2}\left(\frac{1}{2} t\right)
$$

We have that $\sin \left(\frac{1}{2} t\right) \neq 0$ on $\left[\frac{\pi}{4}, \frac{7 \pi}{4}\right]$, so $f^{\prime}(t)$ is continuous on this closed interval. We also have that $f^{\prime}\left(\frac{\pi}{2}\right)=f^{\prime}\left(\frac{3 \pi}{2}\right)=0$, so f has two critical points on this interval. Testing these critical points and the endpoints,

$$
\begin{aligned}
f\left(\frac{\pi}{4}\right) & \approx 3.1996 \\
f\left(\frac{\pi}{2}\right) & \approx 2.5708 \\
f\left(\frac{3 \pi}{2}\right) & \approx 3.7124 \\
f\left(\frac{7 \pi}{4}\right) & \approx 3.0836
\end{aligned}
$$

by the Extreme Value Theorem, we have that the minimum value 2.5708 occurs at $t=\frac{\pi}{2}$, and the maximum value 3.7124 occurs at $t=\frac{3 \pi}{2}$.
5. Taking the first derivative, we have

$$
f^{\prime}(x)=\frac{1}{x}-1
$$

Since $x \neq 0$ on $\left[\frac{1}{2}, 2\right]$, we have that $f^{\prime}(x)$ is continuous on this interval. As $f^{\prime}(1)=0$, there is a single critical point on this interval. Testing this critical point and the endpoints,

$$
\begin{aligned}
& f\left(\frac{1}{2}\right) \approx-1.1931 \\
& f(1)=-1 \\
& f(2) \approx-1.3069
\end{aligned}
$$

by the Extreme Value Theorem, we have that the minimum value -1.3069 occurs at $x=2$, and the maximum value -1 occurs at $x=1$.
6. Taking the first derivative, we have

$$
f^{\prime}(s)=1+\frac{2}{1+s^{2}}
$$

Since $s^{2} \neq-1$ on \mathbb{R}, we have that $f^{\prime}(s)$ is continuous on the interval $[0,4]$. There are no critical points on this interval. Testing the endpoints,

$$
\begin{aligned}
& f(0)=0 \\
& f(4) \approx 6.6516
\end{aligned}
$$

by the Extreme Value Theorem, we have that the minimum value 0 occurs at $s=0$, and the maximum value 6.6516 occurs at $s=4$.

