MAT265 Homework 08 (Solutions)

1. Let $\theta=\sin ^{-1} x$, so that $\sin \theta=x=\frac{x}{1}$. We then have the following right triangle:

From the picture we can see that

$$
\tan \left(\sin ^{-1}(x)\right)=\tan (\theta)=\frac{x}{\sqrt{1-x^{2}}}
$$

2. For simplicity, let $g(x)=x^{2}, h(x)=\ln (x)$, and $j(x)=\arcsin (x)$. We then have that

$$
f(x)=g(x) \cdot h(j(x))
$$

and after applying a product rule and a chain rule, we get

$$
\begin{aligned}
f^{\prime}(x) & =g^{\prime}(x) \cdot h(j(x))+g(x) \cdot h^{\prime}(j(x)) \cdot j^{\prime}(x) \\
& =2 x \ln (\arcsin (x))+x^{2} \cdot \frac{1}{\arcsin (x)} \cdot \frac{1}{\sqrt{1-x^{2}}}
\end{aligned}
$$

3. a. First,

$$
\lim _{x \rightarrow \infty} \frac{3+\sqrt{3} x^{3}}{4+2 x^{3}}=\frac{\sqrt{3}}{2} . y
$$

Since $\arccos (x)$ is continuous in a neighborhood of $\frac{\sqrt{3}}{2}$, we have

$$
\lim _{x \rightarrow \infty} \arccos \left(\frac{3+\sqrt{3} x^{3}}{4+2 x^{3}}\right)=\arccos \left(\lim _{x \rightarrow \infty} \frac{3+\sqrt{3} x^{3}}{4+2 x^{3}}\right)=\arccos \left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{6}
$$

b. This limit is indeterminate of type $\frac{0}{0}$, so l'Hospital's Rule would apply. However, factoring is an easier method.

$$
\lim _{x \rightarrow 2} \frac{x^{3}+x-10}{x-2}=\lim _{x \rightarrow 2} \frac{(x-2)\left(x^{2}+2 x+5\right)}{x-2}=\lim _{x \rightarrow 2}\left(x^{2}+2 x+5\right)=13
$$

c. This limit is indeterminate of type $\frac{0}{0}$, so l'Hospital's Rule would apply. However, using trig identities first might make it easier.

$$
\lim _{x \rightarrow \frac{\pi}{2}} \frac{\cos (3 x)}{\cot (5 x)}=\lim _{x \rightarrow \frac{\pi}{2}} \frac{\cos (3 x) \cdot \sin (5 x)}{\cos (5 x)}
$$

This new limit is still indeterminate of type $\frac{0}{0}$, so applying l'Hospital's Rule, we get

$$
\begin{aligned}
\lim _{x \rightarrow \frac{\pi}{2}} \frac{\cos (3 x) \cdot \sin (5 x)}{\cos (5 x)} & \stackrel{L H}{=} \lim _{x \rightarrow \frac{\pi}{2}} \frac{-3 \sin (3 x) \sin (5 x)+5 \cos (3 x) \cos (5 x)}{-5 \sin (5 x)} \\
& =\frac{-3(-1)(1)+5(0)(0)}{-5(1)} \\
& =-\frac{3}{5}
\end{aligned}
$$

d. This limit is indeterminate of type $\frac{0}{0}$, so applying l'Hospital's Rule, we get

$$
\lim _{x \rightarrow 0} \frac{x^{3}}{1-\cos (x)} \stackrel{L H}{=} \lim _{x \rightarrow 0} \frac{3 x^{2}}{\sin (x)}
$$

This new limit is still indeterminate of type $\frac{0}{0}$, so applying l'Hospital's Rule again, we get

$$
\lim _{x \rightarrow 0} \frac{3 x^{2}}{\sin (x)} \stackrel{L H}{=} \lim _{x \rightarrow 0} \frac{6 x}{\cos (x)}=\frac{6(0)}{1}=0 .
$$

e. This limit is indeterminate of type $\frac{0}{0}$. Before applying l'Hospital's Rule, we make a substitution to save us some grief. Let $t=\sqrt{x}$. Then as $x \rightarrow \infty, t \rightarrow \infty$. So

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\ln (\sqrt{x})}{\sqrt{x}} & =\lim _{t \rightarrow \infty} \frac{\ln (t)}{t} \\
& \stackrel{L H}{=} \lim _{t \rightarrow \infty} \frac{\left(\frac{1}{t}\right)}{1}=0 .
\end{aligned}
$$

f. This limit is super indeterminate, so we first rearrange it to get it into an indeterminate form that we know.

$$
\lim _{t \rightarrow \infty} \frac{11^{t}-5^{t}}{t}=\lim _{t \rightarrow \infty} \frac{5^{t}\left(\left(\frac{11}{5}\right)^{t}-1\right)}{t}
$$

In this form, it is now clear that the limit is indeterminate of type $\frac{\infty}{\infty}$. So, applying l'Hospital's Rule, we get

$$
\lim _{t \rightarrow \infty} \frac{5^{t}\left(\left(\frac{11}{5}\right)^{t}-1\right)}{t} . \stackrel{L H}{=} \lim _{t \rightarrow \infty} \frac{5^{t} \ln 5\left(\left(\frac{11}{5}\right)^{t}-1\right)+5^{t}\left(\frac{11}{5}\right)^{t} \ln \frac{11}{5}}{1}=\infty
$$

g. This limit is indeterminate of type $0 \cdot \infty$, and so l'Hospital's Rule does not directly apply.

Rearranging the limit, we get

$$
\lim _{x \rightarrow \infty} x^{3} \tan \left(\frac{1}{x}\right)=\lim _{x \rightarrow \infty} \frac{\tan \left(\frac{1}{x}\right)}{1 / x^{3}}
$$

This new limit is now indeterminate of type $\frac{0}{0}$, and so we can apply l'Hospital's Rule. Before applying it, we make a substitution to simplify the derivatives. Let $t=\frac{1}{x}$, so as $x \rightarrow \infty, t \rightarrow 0$.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\tan \left(\frac{1}{x}\right)}{1 / x^{3}} & =\lim _{t \rightarrow 0} \frac{\tan t}{t^{3}} \\
& \stackrel{L H}{=} \lim _{t \rightarrow 0} \frac{\sec ^{2} t}{3 t^{2}}=\infty
\end{aligned}
$$

h. This limit is indeterminate of type ∞^{0}, so l'Hospital's does not apply directly. So, let

$$
L=\lim _{x \rightarrow \infty}\left(e^{x}+2 x\right)^{\frac{1}{2 x}}
$$

By continuity of the natural logarithm, we then have that

$$
\ln L=\lim _{x \rightarrow \infty} \ln \left(\left(e^{x}+2 x\right)^{\frac{1}{2 x}}\right)=\lim _{x \rightarrow \infty} \frac{\ln \left(e^{x}+2 x\right)}{2 x}
$$

This new limit is indeterminate of type $\frac{\infty}{\infty}$, so we can apply l'Hospital's Rule. Doing so, we get

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{\ln \left(e^{x}+2 x\right)}{2 x} \stackrel{L H}{=} \\
& \lim _{x \rightarrow \infty} \frac{\left(\frac{e^{x}+2}{e^{x}+2 x}\right)}{2} \\
&=\lim _{x \rightarrow \infty} \frac{e^{x}+2}{2 e^{x}+4 x} .
\end{aligned}
$$

Again this new limit is indeterminate of type $\frac{0}{0}$, so we apply l'Hospital's Rule again to get

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{e^{x}+2}{2 e^{x}+4 x} & \stackrel{L H}{=} \lim _{x \rightarrow \infty} \frac{e^{x}}{2 e^{x}+4} \\
& =\lim _{x \rightarrow \infty} \frac{e^{x}}{e^{x}\left(2+\frac{4}{e^{x}}\right)} \\
& =\lim _{x \rightarrow \infty} \frac{1}{2+\frac{4}{e^{x}}}=\frac{1}{2}
\end{aligned}
$$

Thus we have $\ln L=\frac{1}{2}$, whence $L=e^{\frac{1}{2}}$.
4. This limit is indeterminate of type $\frac{0}{0}$, so applying l'Hospital's Rule, we get

$$
\begin{gathered}
\lim _{x \rightarrow \infty} \frac{5^{x}-4^{x}}{3^{x}-2^{x}} \stackrel{L H}{=} \lim _{x \rightarrow \infty} \frac{5^{x} \ln 5-4^{x} \ln 4}{3^{x} \ln 3-2^{x} \ln 2} \\
=\frac{\ln 5-\ln 4}{\ln 3-\ln 2}
\end{gathered}
$$

