1. Recall that the area of a disk of radius r is given by $A=\pi r^{2}$. Using differentials, we see that $d A=2 \pi r d r$.
a. When $r=40 \mathrm{~cm}$ and $d r=0.3 \mathrm{~cm}$, we get that the maximum propogated error in measurement of the area is

$$
d A=2 \pi r d r=2 \pi(40)(0.3) \approx 75.398 \mathrm{~cm}^{2}
$$

b. The relative error (resp. percentage error) in measurement of the Area is given by

$$
\frac{d A}{A}=\frac{2 \pi r d r}{\pi r^{2}}=\frac{2 d r}{r}=\frac{0.6}{40}=0.015(=1.5 \%)
$$

2.

Recall that the volume of a sphere of radius r is given by $V=\frac{4}{3} \pi r^{3}$. Using differentials, we see that $d V=4 \pi r^{2} d r$. When $r=\frac{4 \mathrm{~cm}}{2}=2 \mathrm{~cm}$ and $d r=2.5 \mathrm{~mm}=0.25 \mathrm{~cm}$, we estimate that the amount of chocolate needed is

$$
d V=4 \pi(2)^{2}(0.25)=4 \pi \mathrm{~cm}^{3} \approx 12.566
$$

3.

Shown above: in blue, the graph of $y=g(x)$; in gold, the tangent line at $(3, g(3))$.
a. The linear approximation at $x=3$ is

$$
L(x)=g^{\prime}(4)(x-3)+g(3)=\sqrt{x^{2}+2 x+3}(x-3)+7 .
$$

Using this, we get

$$
g(2.9) \approx L(2.9)=6.582 \quad \text { and } \quad g(3.05) \approx L(3.05)=7.214
$$

b. Since $g^{\prime}(x)$ is always positive and it is increasing, it must be that the tangent line is always below the graph of $y=g(x)$. This means our estimates are always too small.
4.

a. Multiplying the function by -1 flips about the line $y=0$, and then adding 4 to the function translates the graph up 4 units. So we get the net effect of reflecting about the line $y=2$.

$$
f(x)=-e^{x}+4
$$

b. Subtracting 8 from the function's argument translates the graph right 8 units, and then multiplying the function's argument by -1 flips about the line $x=0$. So we get the net effect of reflecting about the line $x=4$.

$$
g(x)=e^{-(x-8)}
$$

5. Since $\sin (x)$ has domain $(-\infty, \infty)$ the domain of $\sin \left(e^{-x}\right)$ is equal to the domain of e^{-x}, which is $(-\infty, \infty)$.
6. Let $t=-x^{2}$. Note that as $x \rightarrow \infty$, we have $t \rightarrow-\infty$. Thus, since $e>1$,

$$
\lim _{x \rightarrow \infty} e^{-x^{2}}=\lim _{t \rightarrow-\infty} e^{t}=0
$$

7.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{2+10^{x}}{3-10^{x}} & =\lim _{x \rightarrow \infty} \frac{10^{x}\left(2 \cdot \frac{1}{10^{x}}+1\right)}{10^{x}\left(3 \cdot \frac{1}{10^{x}}-1\right)} \\
& =\lim _{x \rightarrow \infty} \frac{2 \cdot \frac{1}{10^{x}}+1}{3 \cdot \frac{1}{10^{x}}-1} \\
& =\frac{2 \cdot\left[\lim _{x \rightarrow \infty} \frac{1}{10^{x}}\right]+1}{3 \cdot\left[\lim _{x \rightarrow \infty} \frac{1}{10^{x}}\right]-1} \\
& =\frac{1}{-1}=-1 .
\end{aligned}
$$

