1. To find the slope, we need $\frac{d y}{d x}$. Thus

$$
\begin{aligned}
\frac{d}{d x}[2] & =\frac{d}{d x}\left[-x^{2}+2 \sqrt{3} x y+y^{2}\right] \\
0 & =-2 x+2 \sqrt{3} y+2 \sqrt{3} x \frac{d y}{d x}+2 y \frac{d y}{d x} \\
2 x-2 \sqrt{3} y & =(2 \sqrt{3} x+2 y) \frac{d y}{d x} \\
\Rightarrow \quad \frac{d y}{d x} & =\frac{2 x-2 \sqrt{3} y}{2 \sqrt{3} x+2 y} .
\end{aligned}
$$

So, plugging in the point $(0,-\sqrt{2})$ we have that the slope of the tangent line is $-\sqrt{3}$, whence the the tangent line is given by the equation

$$
y=(\sqrt{3}) x-\sqrt{2}
$$

2. a. Let $A=A(t)$ be the area, and $r=r(t)$ the radius at time t. We have that $A=\pi r^{2}$, so differentiating implicitly, we get

$$
\frac{d A}{d t}=2 \pi r \frac{d r}{d t} .
$$

b. We're given that $\frac{d r}{d t}=8 \mathrm{in} / \mathrm{s}$. So when $r=29 \mathrm{in}$, by our results from the previous part

$$
\frac{d A}{d t}=2 \pi(29)(8)=464 \pi \mathrm{in}^{2} / \mathrm{s} \approx 1457.7 \mathrm{in}^{2} / \mathrm{s}
$$

3. Let $A=A(t)$ be the area, $\ell=\ell(t)$ the length, and $w=w(t)$ the width. We have that $A=\ell w$, so differentiating implicitly we get that

$$
\frac{d A}{d t}=w \frac{d \ell}{d t}+\ell \frac{d w}{d t}
$$

We're given that $\frac{d \ell}{d t}=5 \mathrm{~cm} / \mathrm{s}$ and $\frac{d w}{d t}=-5 \mathrm{~cm} / \mathrm{s}$, so when $\ell=20 \mathrm{~cm}$ and $w=30 \mathrm{~cm}$, we have

$$
\frac{d A}{d t}=30(5)+20(-5)=10 \mathrm{~cm}^{2} / \mathrm{s}
$$

When $\ell(t)=40$ and $w(t)=10$, we get

$$
\frac{d A}{d t}=10(5)+40(-5)=-150, \mathrm{~cm}^{2} / \mathrm{s}
$$

so the area is decreasing.
4. Let $V=V(t)$ be the volume and $r=r(t)$ the area at time t. We have that $V=\frac{4}{3} \pi r^{3}$, so differentiating implicitly we get

$$
\frac{d V}{d t}=4 \pi r^{2} \frac{d r}{d t}
$$

We're given that $\frac{d r}{d t}=3 \mathrm{~mm} / \mathrm{s}$, so when the radius is 75 mm ,

$$
\frac{d V}{d t}=4 \pi[75]^{2}(3)=67500 \pi \mathrm{~mm}^{3} / \mathrm{s} \approx 212,057.5 \mathrm{~mm}^{3} / \mathrm{s}
$$

5.

Let $t=0$ at 12:00Pm. Let $z=z(t)$ be the distance between the UPS truck and the FedEx truck at time $t, x=x(t)$ the east/west distance traveled, and $y=y(t)$ the north/south distance. By the Pythagorean theorem, we have $z^{2}=x^{2}+y^{2}$, hence

$$
\frac{d z}{d t}=-\frac{(100-x)}{z} \frac{d x}{d t}+\frac{y}{z} \frac{d y}{d t}
$$

We're given that $\frac{d x}{d t}=55 \mathrm{mi} / \mathrm{h}$ and $\frac{d y}{d x}=75 \mathrm{mi} / \mathrm{h}$. So when $t=2$ hours, $x=100 \mathrm{mi}, y=150 \mathrm{mi}$ and $z=\sqrt{(100-x)^{2}+y^{2}}=\sqrt{22600}$, thus

$$
\frac{d z}{d t}=-\frac{(100-x)}{z} \frac{d x}{d t}+\frac{y}{z} \frac{d y}{d t}=\frac{10}{\sqrt{22600}}(55)+\frac{150}{\sqrt{22600}}(75) \approx 78.49 \mathrm{mi} / \mathrm{h}
$$

6. Let $V=V(t)$ be the volume, $r=r(t)$ the radius, and $h=h(t)$ the height at time t. We have that $V=\frac{\pi}{3} r^{2} h$. Since the ratio of the radius to the height is constantly $\frac{9}{7}$, we can actually deduce that $r=\frac{9}{7} h$ so in fact $V=\frac{3 \pi}{7} h^{3}$. By implicit differentiation, we have that

$$
\frac{d V}{d t}=\frac{9 \pi}{7} h^{2} \frac{d h}{d t}
$$

We're given that $\frac{d V}{d t}=10-c \mathrm{ft}^{3} /$ min (where c is the constant speed at which the water is leaking out of the tank) and that $\frac{d h}{d t}=-1 \mathrm{ft} / \mathrm{min}$. When the height is 3 ft , we get

$$
\begin{aligned}
& 10-c=\frac{9 \pi}{7}(3)^{2}(-1)=-\frac{81 \pi}{7} \\
& \Rightarrow \quad c=10+\frac{81 \pi}{7} \mathrm{ft}^{3} / \mathrm{min} \approx 46.35 \mathrm{ft}^{3} / \mathrm{min}
\end{aligned}
$$

