1. (a) Since $g(x)=f(x) \sin (x)$ is a product of two functions, we calculate g^{\prime} using the product rule:

$$
\begin{aligned}
g^{\prime}(x) & =\frac{d}{d x}[f(x) \sin (x)] \\
& =\frac{d}{d x}[f(x)] \cdot \sin (x)+f(x) \cdot \frac{d}{d x}[\sin (x)] \\
& =f^{\prime}(x) \sin (x)+f(x) \cos (x) .
\end{aligned}
$$

Now we can evaluate the derivative at $x=\frac{\pi}{4}$:

$$
\begin{aligned}
g^{\prime}\left(\frac{\pi}{4}\right) & =f^{\prime}\left(\frac{\pi}{4}\right) \sin \left(\frac{\pi}{4}\right)+f\left(\frac{\pi}{4}\right) \cos \left(\frac{\pi}{4}\right) \\
& =(-3)\left(\frac{\sqrt{2}}{2}\right)+\left(\frac{1}{2}\right)\left(\frac{\sqrt{2}}{2}\right) \\
& =\frac{-5 \sqrt{2}}{4}
\end{aligned}
$$

(b) Since $h(x)=\frac{\cos (x)}{f(x)}$ is a quotient of two functions, we calculate h^{\prime} using the quotient rule:

$$
\begin{aligned}
h^{\prime}(x) & =\frac{d}{d x}\left[\frac{\cos (x)}{f(x)}\right] \\
& =\frac{\frac{d}{d x}[\cos (x)] f(x)-\cos (x) \frac{d}{d x}[f(x)]}{[f(x)]^{2}} \\
& =\frac{f(x)[-\sin (x)]-f^{\prime}(x) \cos (x)}{[f(x)]^{2}} \\
& =-\frac{f(x) \sin (x)+f^{\prime}(x) \cos (x)}{[f(x)]^{2}} .
\end{aligned}
$$

Now we can evaluate the derivatives at $x=\frac{\pi}{4}$:

$$
\begin{aligned}
h^{\prime}\left(\frac{\pi}{4}\right) & =-\frac{f\left(\frac{\pi}{4}\right) \sin \left(\frac{\pi}{4}\right)+f^{\prime}\left(\frac{\pi}{4}\right) \cos \left(\frac{\pi}{4}\right)}{\left[f\left(\frac{\pi}{4}\right)\right]^{2}} \\
& =\frac{\frac{5 \sqrt{2}}{4}}{(-3)^{2}} \\
& =\frac{5 \sqrt{2}}{36}
\end{aligned}
$$

2. The following numbers can be found using the appropriate derivative rules and the given values.
(a) Sum rule: $(f+g)^{\prime}(3)=f^{\prime}(3)+g^{\prime}(3)=-6+5=-1$
(b) Product rule: $(f g)^{\prime}(3)=f(3) g^{\prime}(3)+g(3) f^{\prime}(3)=(4)(5)+(2)(-6)=8$
(c) Quotient rule: $\left(\frac{f}{g}\right)^{\prime}(3)=\frac{g(3) f^{\prime}(3)-f(3) g^{\prime}(3)}{[g(3)]^{2}}=\frac{(2)(-6)-(4)(5)}{4}=\frac{-32}{4}=-8$
(d) Quotient rule: $\left(\frac{g}{f}\right)^{\prime}(3)=\frac{f(3) g^{\prime}(3)-g(3) f^{\prime}(3)}{[f(3)]^{2}}=\frac{(4)(5)-(-6)(2)}{16}=\frac{32}{16}=2$
3. The following numbers can be found using the appropriate derivative rules and information from the graph. We need to estimate the values for $F^{\prime}(2)$ and $G^{\prime}(2)$:

(a) From the graph we see that $F(2)=3$ and $G(2)=2$. Recalling that $F^{\prime}(2)$ is the slope of the tangent line of the graph of $F(x)$ at $x=2$, from the graph we estimate that $F^{\prime}(2)=0$ and that $G^{\prime}(2)=\frac{1}{2}$. Thus,

$$
P^{\prime}(2)=F^{\prime}(2) G(2)+G^{\prime}(2) F(2)=(0)(2)+\left(\frac{1}{2}\right)(3)=\frac{3}{2} .
$$

(b) Since $G(7)=0, Q^{\prime}(7)$ does not exist (otherwise we would be dividing by 0).
4. Let g be a differentiable function then,
(a) $y^{\prime}=3 x^{2} g(x)+x^{3} g^{\prime}(x)$
(b) $y^{\prime}=\frac{x^{4} g^{\prime}(x)-4 x^{3} g(x)}{x^{8}}$
(c) $y^{\prime}=\frac{g(x)(2 x)-x^{2} g^{\prime}(x)}{[g(x)]^{2}}$
(d) $y^{\prime}=\frac{\sqrt{x}\left(g(x)+x g^{\prime}(x)\right)-(1+x g(x)) \frac{1}{2 \sqrt{x}}}{x}$
5. We notice that h is a composite function. From the chain rule it follows that

$$
h^{\prime}(x)=\frac{f^{\prime}(x)}{\sqrt{3+2 f(x)}}
$$

and in particular,

$$
h^{\prime}(2)=\frac{5}{3} .
$$

6. (a) $F^{\prime}(2)=f^{\prime}(f(2)) f^{\prime}(2)=f^{\prime}(1)(5)=(4)(5)=20$
(b) $G^{\prime}(3)=g^{\prime}(g(3)) g^{\prime}(3)=g^{\prime}(2)(9)=(7)(9)=63$
(c) $H^{\prime}(2)=g^{\prime}(f(2)) f^{\prime}(2)=g^{\prime}(1)(5)=(6)(5)=30$
7. Using the chain rule, it follows that $h^{\prime}(x)=f^{\prime}(f(x)) f^{\prime}(x)$ and $g^{\prime}(x)=f^{\prime}\left(x^{2}\right)(2 x)$. Therefore $h^{\prime}(2)=f^{\prime}\left(\frac{5}{4}\right) f^{\prime}(2)$ and $g^{\prime}(2)=4 f^{\prime}(4)$. We use the graph to estimate these values:

From the graph, it appears that $f^{\prime}\left(\frac{5}{4}\right)=-1, f^{\prime}(2)=3, f^{\prime}(4)=30$. Thus, $h^{\prime}(2)=(-1)(3)=$ -3 and $g^{\prime}(2)=4(30)=120$.
8. Let f be differentiable on \mathbb{R} and α be a real number. Then
(a) $F^{\prime}(x)=f^{\prime}\left(x^{\alpha}\right)\left(\alpha x^{\alpha-1}\right)$
(b) $\quad G^{\prime}(x)=\alpha[f(x)]^{\alpha-1} f^{\prime}(x)$
9. Let g be a twice differentiable function and $f(x)=g\left(x^{3}\right) \sin (x)$. Then

$$
f^{\prime}(x)=g\left(x^{3}\right) \cos (x)+g^{\prime}\left(x^{3}\right)\left(3 x^{2}\right) \sin (x)
$$

and

$$
\begin{aligned}
f^{\prime \prime}(x)=- & g\left(x^{3}\right) \sin (x)+g^{\prime}\left(x^{3}\right)\left(3 x^{2}\right) \cos (x)+6 x\left[g^{\prime}\left(x^{3}\right) \sin (x)\right] \\
& +\left(3 x^{2}\right)\left[g^{\prime \prime}\left(x^{3}\right)\left(3 x^{2}\right) \sin (x)+g^{\prime}\left(x^{3}\right) \cos (x)\right]
\end{aligned}
$$

