
MAT265 Homework 02 (Solutions)

1. The graph of the function is below.
a.
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From the above graph, it looks like we have two horizontal asymptotes and one vertical
asymptote. As such, we estimate the following:

lim
x→−∞

√
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5x− 1
≈ −0.2 and lim

x→∞

√
x2 + x + 2

5x− 1
≈ 0.2.

b. The tables below appear to confirm our estimates from part (a).

x f(x)
-1 -0.235702
-10 -0.188072
-100 -0.19862
-1000 -0.19986

-10,000 -0.199986

x f(x)
1 0.5
10 0.21598
100 0.20142
1000 0.20014
10000 0.200014

c. The key here is to recall that
√
x2 = |x|, and then we’ll appeal to the piecewise definition

of the absolute value of x.
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= −
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5
.
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2. To find the horizontal asymptotes, we take the limits as x → −∞ and x → ∞. Again, we’ll
need to recall that

√
x2 = |x| and appeal to the piecewise definition of the absolute value.
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= lim
x→∞
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So, we have two horizontal asymptotes: y = −1 and y = 1.

To check for the vertical asymptotes, we start by looking for x-values where the denominator
is 0. Since the discriminant of x2 − x + 4 is negative, this tells us that x2 − x + 4 > 0 for all
x, so there are no vertical asymptotes.

The graph of the function is below.
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3.
a. With some work, we see that the function has domain
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)

.
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From the graph above, it looks like

lim
x→∞

(√
2x2 + 8x + 1−

√
2x2 + x + 19

)
≈ 2.5.

b. For the tables of values below,

x f(x)
10 1.63031
100 2.38406
1000 2.46573

10,000 2.47396
100,000 2.47478

we estimate the following:

lim
x→∞

(√
2x2 + 8x + 1−

√
2x2 + x + 19

)
≈ 2.4750.

c. To solve the limits explicitly, we will use the conjugates of the square roots and again
appeal to the fact that

√
x2 = |x|.
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= lim
x→∞
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≈ 2.4749.

4. The average velocity over the interval [a, b] is given by
s(b)− s(a)

b− a
.

a. i.
s(4)− s(3)

4− 3
=

5− 5.5

4− 3
= −0.5 m/s

ii.
s(4)− s(3.5)

4− 3.5
=

5− 5.125

4− 3.5
= −0.25 m/s

iii.
s(5)− s(4)

5− 4
=

5.5− 5

5− 4
= 0.5 m/s

iv.
s(4.5)− s(4)

4.5− 4
=

5.125− 5

4.5− 4
= 0.25 m/s

b. To find the instantaneous velocity at t = 4,

s′(4) = lim
t→4

s(t)− s(4)

t− 4
= lim

t→4

(
1
2
t2 − 4t + 13

)
− 5

t− 4

= lim
t→4

1
2
t2 − 4t + 8

t− 4

= lim
t→4

1
2
(t− 4)2

t− 4

= lim
t→4

1

2
(t− 4) = 0 m/s.

5. Recall that g′(3) is the slope of the tangent line at the point (3, g(3)). Thus

y − g(3) = g′(3) (x− 3)

y + 5 = 3(x− 3)

y = 3x− 14

is the equation of the tangent line to the curve y = g(x) at the point (3,−5).

6. Using the definition

f ′(a) = lim
h→0

f(a + h)− f(a)

h
,

it’s not hard to see that f(x) = 3
√
x and a = 27.
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7. Using the definition

f ′(a) = lim
t→a

f(t)− f(a)

t− a
,

it’s not hard to see that f(t) = t3 − t2 and a = 2.

8. a. i.
19767− 17003

2013− 2011
= 1382 stores/year

ii.
23043− 21366

2015− 2014
= 1677 stores/year

iii.
21366− 19767

2014− 2013
= 1599 stores/year

b. We’ll take the average of the rates found in (ii) and (iii) above.

1599 + 1677

2
= 1638 stores/year.

c. First we graph the data given and try to come up with a reasonable curve passing through
the 5 points.
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Looking at the graph as we’ve drawn it, we estimate that the slope of the tangent line
(in blue) at t = 2014 has a slope of about 1717 stores/year.

d. Looking at the graph in part (c), we estimate that the slope of the tangent line (in red)
at t = 2013 has a slope of about 1696 stores/year. From this information, we estimate
that the instantaneous rate of change is increasing by about 21 (stores/year)/year.
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