1. The graph of the function is below.
a.

From the above graph, it looks like we have two horizontal asymptotes and one vertical asymptote. As such, we estimate the following:

$$
\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+x+2}}{5 x-1} \approx-0.2 \quad \text { and } \quad \lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+x+2}}{5 x-1} \approx 0.2
$$

b. The tables below appear to confirm our estimates from part (a).

x	$f(x)$
-1	-0.235702
-10	-0.188072
-100	-0.19862
-1000	-0.19986
$-10,000$	-0.199986

x	$f(x)$
1	0.5
10	0.21598
100	0.20142
1000	0.20014
10000	0.200014

c. The key here is to recall that $\sqrt{x^{2}}=|x|$, and then we'll appeal to the piecewise definition of the absolute value of x.

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+x+2}}{5 x-1} & =\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}\left(1+\frac{1}{x}+\frac{2}{x^{2}}\right)}}{x\left(5-\frac{1}{x}\right)} \\
& =\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}} \sqrt{1+\frac{1}{x}+\frac{2}{x^{2}}}}{x\left(5-\frac{1}{x}\right)} \\
& =\lim _{x \rightarrow-\infty} \frac{|x| \sqrt{1+\frac{1}{x}+\frac{2}{x^{2}}}}{x\left(5-\frac{1}{x}\right)} \\
& =\lim _{x \rightarrow-\infty} \frac{-x \sqrt{1+\frac{1}{x}+\frac{2}{x^{2}}}}{x\left(5-\frac{1}{x}\right)} \\
& =\lim _{x \rightarrow-\infty}-\frac{\sqrt{1+\frac{1}{x}+\frac{2}{x^{2}}}}{5-\frac{1}{x}}
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{\sqrt{1+0+0}}{5-0}=-\frac{1}{5} \\
\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+x+2}}{5 x-1} & =\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}\left(1+\frac{1}{x}+\frac{2}{x^{2}}\right)}}{x\left(5-\frac{1}{x}\right)} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}} \sqrt{1+\frac{1}{x}+\frac{2}{x^{2}}}}{x\left(5-\frac{1}{x}\right)} \\
& =\lim _{x \rightarrow \infty} \frac{|x| \sqrt{1+\frac{1}{x}+\frac{2}{x^{2}}}}{x\left(5-\frac{1}{x}\right)} \\
& =\lim _{x \rightarrow \infty} \frac{x \sqrt{1+\frac{1}{x}+\frac{2}{x^{2}}}}{x\left(5-\frac{1}{x}\right)} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{1+\frac{1}{x}+\frac{2}{x^{2}}}}{5-\frac{1}{x}} \\
& =\frac{\sqrt{1+0+0}}{5-0}=\frac{1}{5}
\end{aligned}
$$

2. To find the horizontal asymptotes, we take the limits as $x \rightarrow-\infty$ and $x \rightarrow \infty$. Again, we'll need to recall that $\sqrt{x^{2}}=|x|$ and appeal to the piecewise definition of the absolute value.

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{x-5}{\sqrt{x^{2}-x+4}} & =\lim _{x \rightarrow-\infty} \frac{x\left(1-\frac{5}{x}\right)}{\sqrt{x^{2}\left(1-\frac{1}{x}+\frac{4}{x^{2}}\right)}} \\
& =\lim _{x \rightarrow-\infty} \frac{x\left(1-\frac{5}{x}\right)}{\sqrt{x^{2}} \sqrt{1-\frac{1}{x}+\frac{4}{x^{2}}}} \\
& =\lim _{x \rightarrow-\infty} \frac{x\left(1-\frac{5}{x}\right)}{|x| \sqrt{1-\frac{1}{x}+\frac{4}{x^{2}}}} \\
& \left.=\lim _{x \rightarrow-\infty} \frac{x\left(1-\frac{5}{x}\right)}{-x \sqrt{1-\frac{1}{x}+\frac{4}{x^{2}}}} \quad \quad \quad \quad \text { (since }|x|=-x \text { for } x<0\right) \\
& =\lim _{x \rightarrow-\infty}-\frac{1-\frac{5}{x}}{\sqrt{1-\frac{1}{x}+\frac{4}{x^{2}}}} \\
& =-\frac{1-0}{\sqrt{1-0+0}}=-1,
\end{aligned}
$$

and

$$
\lim _{x \rightarrow \infty} \frac{x-5}{\sqrt{x^{2}-x+4}}=\lim _{x \rightarrow \infty} \frac{x\left(1-\frac{5}{x}\right)}{\sqrt{x^{2}\left(1-\frac{1}{x}+\frac{4}{x^{2}}\right)}}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{x\left(1-\frac{5}{x}\right)}{\sqrt{x^{2}} \sqrt{1-\frac{1}{x}+\frac{4}{x^{2}}}} \\
& =\lim _{x \rightarrow \infty} \frac{x\left(1-\frac{5}{x}\right)}{|x| \sqrt{1-\frac{1}{x}+\frac{4}{x^{2}}}} \\
& =\lim _{x \rightarrow \infty} \frac{x\left(1-\frac{5}{x}\right)}{x \sqrt{1-\frac{1}{x}+\frac{4}{x^{2}}}} \\
& =\lim _{x \rightarrow \infty} \frac{1-\frac{5}{x}}{\sqrt{1-\frac{1}{x}+\frac{4}{x^{2}}}} \\
& =\frac{1-0}{\sqrt{1-0+0}}=1 .
\end{aligned}
$$

$$
=\lim _{x \rightarrow \infty} \frac{x\left(1-\frac{5}{x}\right)}{x \sqrt{1-\frac{1}{x}+\frac{4}{x^{2}}}} \quad \quad \text { (since }|x|=x \text { for } x \geq 0 \text {) }
$$

So, we have two horizontal asymptotes: $y=-1$ and $y=1$.
To check for the vertical asymptotes, we start by looking for x-values where the denominator is 0 . Since the discriminant of $x^{2}-x+4$ is negative, this tells us that $x^{2}-x+4>0$ for all x, so there are no vertical asymptotes.
The graph of the function is below.

3.
a. With some work, we see that the function has domain $\left(-\infty, \frac{-\sqrt{14}-4}{2}\right] \cup\left[\frac{\sqrt{14}-4}{2}, \infty\right)$.

From the graph above, it looks like

$$
\lim _{x \rightarrow \infty}\left(\sqrt{2 x^{2}+8 x+1}-\sqrt{2 x^{2}+x+19}\right) \approx 2.5
$$

b. For the tables of values below,

x	$f(x)$
10	1.63031
100	2.38406
1000	2.46573
10,000	2.47396
100,000	2.47478

we estimate the following:

$$
\lim _{x \rightarrow \infty}\left(\sqrt{2 x^{2}+8 x+1}-\sqrt{2 x^{2}+x+19}\right) \approx 2.4750
$$

c. To solve the limits explicitly, we will use the conjugates of the square roots and again appeal to the fact that $\sqrt{x^{2}}=|x|$.

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(\sqrt{2 x^{2}+8 x+1}-\sqrt{2 x^{2}+x+19}\right) \\
& =\lim _{x \rightarrow \infty}\left(\sqrt{2 x^{2}+8 x+1}-\sqrt{2 x^{2}+x+19}\right)\left(\frac{\sqrt{2 x^{2}+8 x+1}+\sqrt{2 x^{2}+x+19}}{\sqrt{2 x^{2}+8 x+1}+\sqrt{2 x^{2}+x+19}}\right) \\
& =\lim _{x \rightarrow \infty} \frac{\left(2 x^{2}+8 x+1\right)-\left(2 x^{2}+x+19\right)}{\sqrt{2 x^{2}+8 x+1}+\sqrt{2 x^{2}+x+19}} \\
& =\lim _{x \rightarrow \infty} \frac{7 x-18}{\sqrt{x^{2}\left(2+\frac{8}{x}+\frac{1}{x^{2}}\right)}+\sqrt{x^{2}\left(2+\frac{1}{x}+\frac{19}{x^{2}}\right)}} \\
& =\lim _{x \rightarrow \infty} \frac{x\left(7-\frac{18}{x}\right)}{\sqrt{x^{2}}\left(\sqrt{2+\frac{8}{x}+\frac{1}{x^{2}}}+\sqrt{2+\frac{1}{x}+\frac{19}{x^{2}}}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{x\left(7-\frac{18}{x}\right)}{|x|\left(\sqrt{2+\frac{8}{x}+\frac{1}{x^{2}}}+\sqrt{2+\frac{1}{x}+\frac{19}{x^{2}}}\right)} \\
& =\lim _{x \rightarrow \infty} \frac{x\left(7-\frac{18}{x}\right)}{x\left(\sqrt{2+\frac{8}{x}+\frac{1}{x^{2}}}+\sqrt{2+\frac{1}{x}+\frac{19}{x^{2}}}\right)} \quad(\text { since }|x|=x \text { when } x \geq 0) \\
& =\lim _{x \rightarrow \infty} \frac{7-\frac{18}{x}}{\sqrt{2+\frac{8}{x}+\frac{1}{x^{2}}}+\sqrt{2+\frac{1}{x}+\frac{19}{x^{2}}}} \\
& =\frac{7-0}{\sqrt{2+0+0}+\sqrt{2+0+0}}=\frac{7}{2 \sqrt{2}} \approx 2.4749 .
\end{aligned}
$$

4. The average velocity over the interval $[a, b]$ is given by $\frac{s(b)-s(a)}{b-a}$.
a. i. $\frac{s(4)-s(3)}{4-3}=\frac{5-5.5}{4-3}=-0.5 \mathrm{~m} / \mathrm{s}$
ii. $\frac{s(4)-s(3.5)}{4-3.5}=\frac{5-5.125}{4-3.5}=-0.25 \mathrm{~m} / \mathrm{s}$
iii. $\frac{s(5)-s(4)}{5-4}=\frac{5.5-5}{5-4}=0.5 \mathrm{~m} / \mathrm{s}$
iv. $\frac{s(4.5)-s(4)}{4.5-4}=\frac{5.125-5}{4.5-4}=0.25 \mathrm{~m} / \mathrm{s}$
b. To find the instantaneous velocity at $t=4$,

$$
\begin{aligned}
s^{\prime}(4)=\lim _{t \rightarrow 4} \frac{s(t)-s(4)}{t-4} & =\lim _{t \rightarrow 4} \frac{\left(\frac{1}{2} t^{2}-4 t+13\right)-5}{t-4} \\
& =\lim _{t \rightarrow 4} \frac{\frac{1}{2} t^{2}-4 t+8}{t-4} \\
& =\lim _{t \rightarrow 4} \frac{\frac{1}{2}(t-4)^{2}}{t-4} \\
& =\lim _{t \rightarrow 4} \frac{1}{2}(t-4)=0 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

5. Recall that $g^{\prime}(3)$ is the slope of the tangent line at the point $(3, g(3))$. Thus

$$
\begin{aligned}
y-g(3) & =g^{\prime}(3)(x-3) \\
y+5 & =3(x-3) \\
y & =3 x-14
\end{aligned}
$$

is the equation of the tangent line to the curve $y=g(x)$ at the point $(3,-5)$.
6. Using the definition

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

it's not hard to see that $f(x)=\sqrt[3]{x}$ and $a=27$.
7. Using the definition

$$
f^{\prime}(a)=\lim _{t \rightarrow a} \frac{f(t)-f(a)}{t-a}
$$

it's not hard to see that $f(t)=t^{3}-t^{2}$ and $a=2$.
8. a. i. $\frac{19767-17003}{2013-2011}=1382$ stores $/$ year
ii. $\frac{23043-21366}{2015-2014}=1677$ stores/year
iii. $\frac{21366-19767}{2014-2013}=1599$ stores/year
b. We'll take the average of the rates found in (ii) and (iii) above.

$$
\frac{1599+1677}{2}=1638 \text { stores/year. }
$$

c. First we graph the data given and try to come up with a reasonable curve passing through the 5 points.

Looking at the graph as we've drawn it, we estimate that the slope of the tangent line (in blue) at $t=2014$ has a slope of about 1717 stores/year.
d. Looking at the graph in part (c), we estimate that the slope of the tangent line (in red) at $t=2013$ has a slope of about 1696 stores/year. From this information, we estimate that the instantaneous rate of change is increasing by about 21 (stores/year)/year.

