1. The graph of the function is below.

From the above graph we see that $\lim_{x \to a} f(x)$ exists for all real numbers a except when a = 0 as $\lim_{x \to 0^-} f(x) = 1$ and $\lim_{x \to 0^+} f(x) = 0$.

2. From the tables below, it looks like $\lim_{x\to 0} f(x) \approx 1.299$.

x	f(x)	x	f(x)
-1	0.242424	1	8
-0.1	1.09165	0.1	1.54858
-0.01	1.27677	0.01	1.32221
-0.001	1.29701	0.001	1.30156
-0.0001	1.29906	0.0001	1.29951

3.

- **a.** What's wrong is that the two functions are not equal. In particular, the functions do not have the same domain. The left-hand side has domain $(-\infty, 3) \cup (3, \infty)$ and the right-hand side has domain $(-\infty, \infty)$.
- **b.** Functions do not need to agree at a point to have their limits agree. Indeed, that is what is happening here.
- 4. The key here is combine the terms into a single fraction.

$$\lim_{t \to 0} \left(\frac{1}{2t^2} - \frac{1}{2t^2 + t^4} \right) = \lim_{t \to 0} \left(\frac{2t^2 + t^4 - 2t^2}{2t^2(2t^2 + t^4)} \right)$$
$$= \lim_{t \to 0} \left(\frac{t^4}{4t^4 + 2t^6} \right)$$
$$= \lim_{t \to 0} \left(\frac{1}{4 + 2t^2} \right)$$
$$= \frac{1}{4 + 2(0)^2} = \frac{1}{4}$$

5. The key here is to multiply the numerator and denominator by the conjugate of $\sqrt{x^2 + 144} - 13$.

$$\lim_{x \to -5} \frac{\sqrt{x^2 + 144} - 13}{x + 5} = \lim_{x \to -5} \frac{\sqrt{x^2 + 144} - 13}{x + 5} \left(\frac{\sqrt{x^2 + 144} + 13}{\sqrt{x^2 + 144} + 13} \right)$$
$$= \lim_{x \to -5} \frac{x^2 + 144 - 169}{(x + 5)(\sqrt{x^2 + 144} + 13)}$$
$$= \lim_{x \to -5} \frac{x^2 - 25}{(x + 5)(\sqrt{x^2 + 144} + 13)}$$
$$= \lim_{x \to -5} \frac{(x + 5)(x - 5)}{(x + 5)(\sqrt{x^2 + 144} + 13)}$$
$$= \lim_{x \to -5} \frac{x - 5}{\sqrt{x^2 + 144} + 13}$$
$$= \frac{(-5) - 5}{\sqrt{(-5)^2 + 144} + 13}$$
$$= -\frac{5}{13}$$

6. Recall the definition of the absolute value tells us

$$|x-5| = \begin{cases} x-5 & \text{if } x-5 \ge 0\\ -(x-5) & \text{if } x-5 < 0 \end{cases}$$

So, we check the limits from the left and right.

$$\lim_{x \to 5^{-}} \frac{3x - 15}{|x - 5|} = \lim_{x \to 5^{-}} \frac{3x - 15}{-(x - 5)} = \lim_{x \to 5^{-}} \frac{3(x - 5)}{-(x - 5)} = \lim_{x \to 5^{-}} -3,$$

and

$$\lim_{x \to 5^+} \frac{3x - 15}{|x - 5|} = \lim_{x \to 5^+} \frac{3x - 15}{x - 5} = \lim_{x \to 5^+} \frac{3(x - 5)}{x - 5} = \lim_{x \to 5^+} 3.$$

Since the limits from the left and right are not equal, the limit does not exist.

7. a.

i.
$$\lim_{x \to 0^{-}} g(x) = 0$$
iii. $g(0) = -2$
v. $\lim_{x \to 2^{+}} g(x) = 2$

ii. $\lim_{x \to 0} g(x) = 0$
iv. $\lim_{x \to 2^{-}} g(x) = 4$
vi. $\lim_{x \to 2} g(x)$ D.N.E.

b. The graph of the function is below.

8. f is discontinuous at x = 0 as $\lim_{x \to 0^-} f(x) \neq \lim_{x \to 0^+} f(x)$. Here it is continuous from the right. The graph of the function is below.

9. Since x = 2 is the only potential point of discontinuity, we want to examine continuity here. In fact, since f is continuous from the right at x = 2, we only need to find c so that $\lim_{x \to 2^{-}} f(x) = f(2)$

$$\lim_{x \to 2^{-}} f(x) = f(2)$$
$$\lim_{x \to 2^{-}} 3x^{2} + cx = c(2)^{3} - 2(3)$$
$$3(2)^{2} + c(2) = 8c - 6$$
$$12 + 2c = 8c - 6$$
$$\Rightarrow c = 3.$$