§1.3-§2.3

1. See: Exam 01 Review Sheet. Notable problems: 3, 8.
§2.4-§3.7
2. See: Exam 02 Review Sheet. Notable problems: 1, 7, 8, 10, 17, 21.

§4.1-§5.2

3. See: Exam 03 Review Sheet. Notable problems: 2, 7, 8, 11, 16, 18, 19, Example 5.2.3.

§5.3 Evaluating Definite Integrals

4. Evaluate the definite integral $\int_{0}^{1} \frac{1}{1+x^{2}} d x$.
5. Evaluate the definite integral $\int_{1}^{3} \frac{d x}{x}$.
6. The velocity of a particle moving along a horizontal line is given by $v(t)=2 t^{2}-8 t+6$ meters per second after t seconds. Find the distance traveled by the particle during the interval $[0,4]$.
7. The velocity of a particle moving along a horizontal line is given by $v(t)=2 t^{2}-8 t+6$ meters per second after t seconds. Find the displacement of the particle during the interval $[0,4]$.

§5.4 The Fundamental Theorem of Calculus

8. Find the derivative of $\int_{x^{3}}^{1.2} \sec ^{2}(t) d t$.
9. Find $\frac{d}{d x}\left[\int_{x}^{x^{2}} e^{-t^{2}} d t\right]$.
10. Traffic flow is defined as the rate at which cars pass through an intersection, measured in cars-per-minute. At intersection of Elk and Helm, the traffic flow a t minutes is modeled by

$$
F(t)=75+5 \sin \left(\frac{t}{4}\right) \text { on the interval } 0 \leq t \leq 30
$$

What is the average traffic flow from 20 minutes to 25 minutes?
11. Let $f(x)=-x^{2}+8 x+9$. Find the value(s) of c that satisfy the Mean Value Theorem for integrals on the interval $[-1,5]$. Round your answer(s) to three decimal places.

MAT265 Final Exam - Review (Solutions)

1. See: Exam 01 Review Sheet
2. See: Exam 02 Review Sheet
3. See: Exam 03 Review Sheet
4. $\frac{\pi}{4}$
5. $\ln (3)$
6. 8 m
7. $\frac{8}{3} \mathrm{~m} \approx 2.667 \mathrm{~m}$
8. $-3 x^{2} \sec ^{2}\left(x^{3}\right)$
9. $-e^{-x^{2}}+2 x e^{-x^{4}}$
10. $\frac{1}{5} \int_{20}^{25} F(t) d t \approx 72.137 \mathrm{cars} / \mathrm{min}$
11. $c=4-\sqrt{7} \approx 1.354$
