MAT170 Precalculus Exam 02 - Review

Section 3.1-3.2

- 1. Rewrite each of the following in the equivalent logarithmic form.
 - **a.** $b^3 = 1000$ **b.** $7^y = 201$ **c.** $e^9 = z$
- 2. Rewrite each of the following in the equivalent exponential form.
 - **a.** $\log_5(125) = y$ **b.** $5 = \log_b(32)$ **c.** $41 = \ln(x)$
- **3.** State the domain for each of the following.
 - **a.** $f(x) = \log(x)$ **b.** $g(x) = \ln(2-x)$ **c.** $g(x) = \log_{12}(4x+8)$

Section 3.3

- 4. Use the properties of logarithms to rewrite each of the following as a sum and difference of logarithms with no exponents.
 - **a.** $\log(\sqrt{100x})$ **b.** $\log_6\left(\frac{36}{\sqrt{x+1}}\right)$ **c.** $\ln(e^{15\sqrt[5]{x-1}})$
- 5. Use the properties of logarithms to rewrite each of the following as a single logarithm.
 a. 4ln(x+6) 3ln(x)
 - **b.** $\frac{1}{2}(\log_4(x) + \log_4(y)).$
 - c. $\overline{3}\log(x) 4\log(y) + 5\log(z)$

Section 3.4

6. Solve the following for x. (If necessary, round your answers to two decimal places). Be sure to check that your answers make sense.

a.
$$7^{x+2} = 410$$
 b. $\log_6(x+5) + \log_6(x) = 2$ **c.** $e^{2x} - 2e^x - 3 = 0$

- 7. Suppose you invest \$20,000 into an account with an interest rate of 5.1%.
 - **a.** Write an equation for the value of the account after t years, assuming it is compounded *monthly*.
 - **b.** Write an equation for the value of the account after t years, assuming it is compounded *continuously*.
 - c. Find the value of the account after 10 years, assuming it is compounded *monthly*.
 - **d.** How long, in years will it take for the account to reach a value of \$100,000, assuming it is compounded *continuously*? Round your answer to two decimal places.

Section 4.1

- 8. Convert each of the following angle measures into radians. Express each as a multiple of π .
 - **a.** -330° **b.** 36° **c.** 135°
- **9.** Convert each of the following radian angle measures into degrees. (If necessary, round your answer to two decimal places)

a. -1000π **b.** 6 **c.** $\frac{7\pi}{8}$

Section 4.2

- 10. Given that $\cos(\theta) = -\frac{3}{5}$ and that θ is in Quadrant III, find each of the following exactly.
 - **a.** $\sin(\theta)$ **b.** $\tan(\theta)$ **c.** $\sec(\theta)$ **d.** $\csc(\theta)$
- 11. Draw and label the unit circle and important angles. (You should be able to do this without a calculator.)

Section 4.5-4.6

- 12. Let $f(\theta) = -5\cos(2\theta + \frac{\pi}{4})$.
 - **a.** What is the amplitude?
 - **b.** What is the period?
 - **c.** What is the phase shift?
 - **d.** Graph at least one period of f. (You should be able to do this without a calculator.)
- **13.** Let $f(\theta) = 2\sin(\frac{\pi}{2}\theta \pi)$.
 - **a.** What is the amplitude?
 - **b.** What is the period?
 - **c.** What is the phase shift?
 - **d.** Graph at least one period of f. (You should be able to do this without a calculator.)

Section 4.7

14. Find the exact value of each.

a.
$$\sin^{-1}(\sin(\frac{2\pi}{3}))$$
 b. $\cos^{-1}(-\frac{\sqrt{3}}{2})$ **c.** $\cos(\tan^{-1}(\frac{2}{3}))$

Section 4.8

15. Solve the right triangle below. Round your answers to two decimal places when necessary.

