MAT170 Precalculus Exam 01 - Review (Solutions)

1. Let x be the number of years since 2000 and y be the population (in millions). Then we have the points $(1,48.68)$ and $(13,45.49)$ on the graph of the function, so the slope of the line is

$$
m=\frac{45.49-48.68}{13-1}=\frac{-3.19}{12}=-\frac{319}{1200}
$$

and the equation of the line in point-slope form is given by

$$
(y-45.49)=-\frac{319}{1200}(x-1)
$$

2.

a. $\quad f(g(x))=-\left(\frac{1}{x+2}\right)^{2}-2\left(\frac{1}{x+2}\right)+1$.

The domain of $f \circ g$ is $(-\infty,-2) \cup(2, \infty)$ or $\{x \mid x \neq 2\}$
b. $g(f(x))=\frac{1}{\left(-x^{2}-2 x+1\right)+2}=\frac{1}{-x^{2}-2 x+3}=\frac{1}{(1-x)(x+3)}$.

The domain of $g \circ f$ is $(-\infty,-3) \cup(-3,1) \cup(1, \infty)$, or $\{x \mid x \neq-3,1\}$.
3.
a. By the Rational Root Theorem, possible roots are $\pm 1, \pm 2, \pm 3, \pm 6$.
b. By plugging in the possible roots from part (a), we see that the roots are $-2,1,3$.
c. Since $r(x)=x^{3}-2 x-5 x+6=(x+2)(x-1)(x-3)$, each root has multiplicity 1
d. By the leading coefficient test, since 3 is odd and $1>0$, the graph falls to the left and rises to the right.
e. The y-intercept is $r(0)=6$.
f.

4. Let $g(x)=\frac{x^{2}+5 x+6}{(x+3)(x-2)}$.
a. The domain of g is $(-\infty,-3) \cup(-3,2) \cup(2, \infty)$, or $\{x \mid x \neq-3,2\}$.
b. y-intercept: $g(0)=\frac{6}{-6}=-1$.
c. Roots occur when the numerator is 0 . So $x^{2}+5 x+6=(x+3)(x+2)$, so they can only occur at $x=-3,-2$. But -3 is not in the domain, so $g(x)$ has only one root at $x=-2$.
d. Since $x=-3$ is the only value that makes both the numerator and denominator zero, there is a hole at $x=-3$. Since $g(x)$ looks like $\frac{x+2}{x-2}$ (except with a different domain) the hole on the graph is at the point $\left(-3, \frac{1}{5}\right)$.

```
MAT170 Precalculus Exam 01 - Review (Solutions)
```

e. Since $x=2$ does not correspond to a hole, it must be the vertical asymptote.
f. Since the numerator and denominator have the same degree, the horizontal asymptote occurs at $y=\frac{1}{1}=1$.
g.

5. Suppose the cost for Yamaha to manufacture xylophones is modeled by the function $c(x)=$ $x^{2}-2 x+100$ where x is the number of xylophones manufactured.
a. By completing the square

$$
\begin{aligned}
c(x) & =x^{2}-2 x+100 \\
& =\left(x^{2}-2 x\right)+100 \\
& =\left(x^{2}-2 x+(-1)^{2}-(-1)^{2}\right)+100 \\
& =\left(x^{2}-2 x+(-1)^{2}\right)-(-1)^{2}+100 \\
& =(x-1)^{2}+99 .
\end{aligned}
$$

In standard form, we see that the minimum cost (which corresponds to the vertex) occurs at $x=1$, so Yamaha produces should only produce 1 xylophone to minimize cost.
b. The minimum cost is $\$ 99$.
c. The average rate of change in cost is

$$
\frac{c(9)-c(5)}{9-5}=\frac{163-115}{9-5}=\frac{48}{4}=12 \text { dollars per xylophone. }
$$

6. Let $f(x)=\frac{1}{x^{2}+4}$
a. Since the denominator is never zero, the domain is $(-\infty, \infty)$ or \mathbb{R}. The range of $x^{2}+4$ is $[4, \infty)$, so the range of $\frac{1}{x^{2}+4}$ is $\left(0, \frac{1}{4}\right]$.
b. f passes the vertical line test, so it is a function.

MAT170 Precalculus Exam 01 - Review (Solutions)

c. To find the inverse,

$$
\begin{aligned}
x & =\frac{1}{y^{2}+4} \\
\frac{1}{x} & =y^{2}+4 \\
\frac{1}{x}-4 & =y^{2} \\
\Rightarrow f^{-1}(x)=y & = \pm \sqrt{\frac{1}{x}-4 .}
\end{aligned}
$$

d. f^{-1} is not a function because it fails the vertical line test (that is, for any $x \neq \frac{1}{4}, f^{-1}(x)$ has two outputs).
7. Let $g(x)=6 x^{2}+5 x-17$.
a. For $h \neq 0$, difference quotient is

$$
\begin{aligned}
\frac{g(x+h)-g(x)}{h} & =\frac{\left(6(x+h)^{2}+5(x+h)-17\right)-\left(6 x^{2}+5 x-17\right)}{h} \\
& =\frac{6\left(x^{2}+2 x h+h^{2}\right)+5(x+h)-17-6 x^{2}-5 x+17}{h} \\
& =\frac{6 x^{2}+12 x h+6 h^{2}+5 x+5 h-17-6 x^{2}-5 x+17}{h} \\
& =\frac{12 x h+6 h^{2}+5 h}{h} \\
& =12 x+6 h+5 .
\end{aligned}
$$

b. Since $g(1)=6(1)+5(1)-17=-6$ and $g(2)=6(4)+5(2)-17=17$, by the Intermediate Value Theorem, there exists a root of g between $x=1$ and $x=2$.
8. Suppose $w(x)=(x+1)^{3}-4$.
a. First option: $f(x)=x-4$ and $g(x)=(x+1)^{3}$.

Second option: $f(x)=x^{3}-4$ and $g(x)=x+1$.
b. Transformations: horizontal shift left 1 and vertical shift down 4, in any order.
9. Algebraically simplify and rewrite each of the following complex numbers in standard form $a+b i$:
a.

$$
\begin{aligned}
(2-i)+(4+7 i) & =(2+4)+(-1+7) i \\
& =6+6 i
\end{aligned}
$$

b.

$$
\begin{aligned}
(4+2 i)-(3 i) & =(4-0)+(2-3) i \\
& =4-i
\end{aligned}
$$

c.

$$
\begin{aligned}
(2+9 i)(3+2 i) & =6+4 i+27 i+18 i^{2} \\
& =6+4 i+27 i-18 \\
& =-12+31 i
\end{aligned}
$$

d.

$$
\begin{aligned}
\frac{6+8 i}{2-7 i} & =\frac{6+8 i}{2-7 i}\left(\frac{2+7 i}{2+7 i}\right) \\
& =\frac{(6+8 i)(2+7 i)}{2^{2}+7^{2}} \\
& =\frac{12+42 i+16 i+56 i^{2}}{53} \\
& =\frac{12+42 i+16 i-56}{53} \\
& =\frac{-44+58 i}{53} \\
& =-\frac{44}{53}+\frac{58 i}{53}
\end{aligned}
$$

