1. The population of Ukraine was 48.68 million in 2001 and dropped to 45.49 million in 2013. Assuming the population decreases at a constant rate, find the equation of the line which relates the population of Ukraine as a function of the number of years since 2000.
2. Let $f(x)=-x^{2}-2 x+1$ and $g(x)=\frac{1}{x+2}$
a. Find $f(g(x))$. What is the domain of $f \circ g$?
b. Find $g(f(x))$. What is the domain of $g \circ f$?
3. Let $r(t)=x^{3}-2 x-5 x+6$.
a. Use the rational root theorem to find a list of possible rational roots.
b. Find the roots of r.
c. What is the multiplicity of each root?
d. What is the end behavior of r ?
e. What is the y-intercept of r ?
f. Use the previous parts to graph r. You should be able to do this without a calculator
4. Let $g(x)=\frac{x^{2}+5 x+6}{(x+3)(x-2)}$.
a. Find the domain of g.
b. Find the y-intercept.
c. Find the roots of g.
d. Find the holes of g.
e. Find the vertical asymptote of g.
f. Describe the end behavior of g. What are the horizontal asymptotes, if any?
g. Use the previous parts to graph g. You should be able to do this without a calculator.
5. Suppose the cost (in dollars) for Yamaha to manufacture xylophones is modeled by the function $c(x)=x^{2}-2 x+100$ where x is the number of xylophones manufactured.
a. Find the number of xylophones that Yamaha should manufacture that minimizes the cost.
b. What is the minimum cost?
c. What is the average rate of change in cost when Yamaha increases the number of xylophones manufactured from 5 to 9 ?
6. Let $f(x)=\frac{1}{x^{2}+4}$
a. What is the domain of f ? What is the range?
b. Is f a function? Explain your reasoning.
c. Assuming f is invertible, find the inverse of f.
d. Is f^{-1} a function? Explain your reasoning.
7. Let $g(x)=6 x^{2}+5 x-17$.
a. Find the difference quotient $\frac{g(x+h)-g(x)}{h}, h \neq 0$, of g. Simplify this.
b. Use the Intermediate Value Theorem to prove that there is a root of g between $x=1$ and $x=2$.
8. Suppose $w(x)=(x+1)^{3}-4$.
a. Find two unique pairs of functions f and g such that $w(x)=(f \circ g)(x)$.
b. Identify the transformations done to the parent function $z(x)=x^{3}$.
9. Algebraically simplify and rewrite each of the following complex numbers in standard form $a+b i$:
a. $(2-i)+(4+7 i)$
b. $(4+2 i)-(3 i)$
c. $(2+9 i)(3+2 i)$
d. $\frac{6+8 i}{2-7 i}$
