Graphing Sine

Suppose we want to graph $y=A \sin (B x-C)$, where $A, B, C \neq 0$. For the time being, assume that all three are positive. Then the amplitude is A, the period is $\frac{2 \pi}{B}$, and the phase shift is $\frac{C}{B}$. Let's also let $p=\frac{2 \pi}{B}$ be the period and $s=\frac{C}{B}$ be the phase shift. The graph of one period of $y=A \sin (B x-C)$ will always look like below (of course, you can choose a different period of the function to draw, but this seems the most natural to the author).

The x-intercepts will always occur at the points $x=s, s+\frac{p}{2}, s+p$, and the maxima/minima will always occur at the points $x=s+\frac{p}{4}, s+\frac{3 p}{4}$. By plotting these five points, you can get a pretty accurate graph of $y=A \sin (B x-C)$.

Of course, if $A<0$, your graph will be the same as above, but reflected across the x-axis, and if $C<0$, your shift will be to the left by s units.

Graphing Cosine

Suppose we want to graph $y=A \cos (B x-C)$, where $A, B, C \neq 0$. For the time being, assume that all three are positive. Then the amplitude is A, the period is $\frac{2 \pi}{B}$, and the phase shift is $\frac{C}{B}$. Let's also let $p=\frac{2 \pi}{B}$ be the period and $s=\frac{C}{B}$ be the phase shift. The graph of one period of $y=A \cos (B x-C)$ will always look like below (of course, you can choose a different period of the function to draw, but this seems the most natural to the author).

The x-intercepts will always occur at the points $x=s+\frac{p}{4}, s+\frac{3 p}{4}$, and the maxima/minima will always occur at the points $x=s, s+\frac{p}{2}, s+p$. By plotting these five points, you can get a pretty accurate graph of $y=A \cos (B x-C)$.

Of course, if $A<0$, your graph will be the same as above, but reflected across the x-axis, and if $C<0$, your shift will be to the left by s units.

