A Bit About Difference Quotients

Recall that, the slope of a line between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is the number m given by

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

To see how this ties into the difference quotient, let f be some arbitrary function. Then for some constant number $h \neq 0$, consider the points $(x, f(x))$ and $(x+h, f(x+h))$ on the graph of the function. By substituting into the above equation, the slope of the line between these two points is given by

$$
m=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} .
$$

The expression on the right is the difference quotient, and it is just the slope of the line between these two points! So the question is, what does h have to do with anything? To motivate this, it might be useful to look at the particular example we had in class. We had the function $f(x)=3 x^{2}+x$, and saw that the difference quotient was $3 h+6 x+1$.

Now let's fix the x-value for this difference quotient, say $x=1$. Then $f(1)=4$ and our difference quotient becomes

$$
\frac{f(1+h)-f(1)}{h}=3 h+7 .
$$

This expression on the right is a function of the variable h, and because it was derived from a difference quotient of f, this new function of h must be related to f somehow. Indeed, this function describes how the slope of the line from $(1,4)$ to the point $(1+h, f(1+h))$ changes as we change h. Notice that, as h gets bigger, the slope of the line gets bigger as well. Visually, here's what's happening:

We'll see these difference quotients again soon when discussing average rates of change.

