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Abstract

We explore hybrid subgroups of certain non-arithmetic lattices in
PU(2, 1). In particular, we show that all of Mostow’s lattices are vir-
tually hybrids; moreover, we show that some of these non-arithmetic
lattices are virtually hybrids of two non-commensurable arithmetic
lattices in PU(1, 1).

1 Introduction

One key notion in the study of lattices in a semisimple Lie group G is that of
arithmeticity (which we will not define here; see [9] for a standard reference).
When G arises as the isometry group of a symmetric space X of non-compact
type, the combined work of Margulis [8], Gromov–Schoen [6], and Corlette [1]
imply that non-arithmetic lattices only exist when X = Hn

R or Hn
C (real

and complex hyperbolic space, respectively); equivalently, up to finite index,
when G = PO(n, 1) or PU(n, 1). Due to their exceptional nature, it has been
a major challenge to find and understand non-arithmetic lattices in these Lie
groups.

Given two arithmetic lattices Γ1,Γ2 in PO(n, 1) with common sublattice
Γ1,2 ≤ PO(n − 1, 1), Gromov and Piatestki-Shapiro showed in [5] that one
can produce a new “hybrid” lattice Γ in PO(n, 1) by way of a technique that
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they call “interbreeding” or “hybridization”. In particular, when Γ1 and Γ2

are not commensurable, Γ is shown to be non-arithmetic. It has been asked
whether an analogous technique can exist for lattices in PU(n, 1).

In [12], Paupert explores a possible analog (which he attributes to unpub-
lished work of Hunt) where one starts with two arithmetic lattices Γ1,Γ2 in
PU(n, 1) and embeddings ιi : PU(n, 1) ↪→ PU(n + 1, 1) such that (1) ι1(Γ1)
and ι2(Γ2) stabilize totally geodesic complex hypersurfaces in Hn+1

C , (2) these
hypersurfaces are orthogonal to one another, and (3) ι1(Γ1)∩ι2(Γ2) is a lattice
in PU(n− 1, 1). The hybrid subgroup is then H(Γ1,Γ2) := 〈ι1(Γ1), ι2(Γ2)〉.

Using the above construction, Paupert then produces an infinite family of
hybrids that are non-discrete in [12]. Following this, in [13], Paupert and the
author used the same hybridization technique to produce both arithmetic
lattices and thin subgroups of the Picard modular groups. In Section 2.2
here, we introduce a more general hybrid construction and explore it in the
context of the lattices Γ(p, t) ⊂ PU(2, 1) originally produced by Mostow
in [10] (see Section 3 for explanation of notation). We obtain the following
main results:

Theorem. 1. All of Mostow’s lattices Γ(p, t) are virtually hybrids.

2. The non-arithmetic lattices Γ(3, 1/12), Γ(4, 1/12), and Γ(5, 1/5) are
virtually hybrids of two non-commensurable arithmetic lattices in PU(1, 1).

The second part of this theorem highlights the similarity of these hybrids and
those hybrids of Gromov–Piatetski-Shapiro, specifically in that the hybridiza-
tion procedure can produce a non-arithmetic lattice from two noncommensu-
rable arithmetic lattices. We were unable to obtain all of the non-arithmetic
lattices in Mostow’s list from hybridizing two non-commensurable arithmetic
lattices, as it is difficult to find candidate hypersurfaces.

In sections 4 and 5, for some values of (p, t) we obtain some commensurable
(but possibly non-isomorphic) lattices by hybridizing using different pairs of
hypersurfaces. While the setup and proofs used here rely upon an initial
choice of a pair of orthogonal hypersurfaces, it’s not clear that the resulting
lattice is particularly sensitive to such choices, nor is it clear that every hybrid
appearing in this work can be obtained in two different ways. We also note
that there are more non-arithmetic lattices in PU(2, 1) than those appearing



2 COMPLEX HYPERBOLIC GEOMETRY AND HYBRIDS 3

in Mostow’s list (see the survey [11] and the newer lattices found in [3]); it
would be interesting to know if any of these lattices are (virtually) hybrids.

The author would like to thank Julien Paupert and the anonymous referee
for many insightful comments and suggestions. Thank you also to Irene
Pasquinelli for pointing out that there was a small error in the list of hybrids
in the main theorem.

2 Complex hyperbolic geometry and hybrids

We give a brief overview of relevant definitions in complex hyperbolic geom-
etry; the reader can see [4] for a standard source.

Let H be a Hermitian matrix of signature (n, 1) and let Cn,1 denote Cn+1

endowed with the Hermitian form 〈·, ·〉 coming from H. Let V− denote the set
of points z ∈ Cn,1 for which 〈z, z〉 < 0, and let V0 denote the set of points for
which 〈z, z〉 = 0. Given the usual projectivization map P : Cn,1−{0} → CPn,
complex hyperbolic n-space is Hn

C := P(V−) with distance d coming from the
Bergman metric

cosh2 1

2
d(P(x),P(y)) =

|〈x, y〉|2

〈x, x〉〈y, y〉

The ideal boundary ∂∞Hn
C is then identified with P(V0).

2.1 Complex hyperbolic isometries

Let U(n, 1) denote the group of unitary matrices preserving H. The holomor-
phic isometry group of Hn

C is PU(n, 1) = U(n, 1)/U(1), and the full isometry
group is generated by PU(n, 1) and the antiholomorphic involution z 7→ z.
Any holomorphic isometry of Hn

C is one of the following three types:

• elliptic if it has a fixed point in Hn
C.

• parabolic if it has exactly one fixed point in the boundary (and no fixed
points in Hn

C).
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• loxodromic if it has exactly two fixed points in the boundary (and no
fixed points in Hn

C).

Given a vector v ∈ Cn,1 with 〈v, v〉 > 0 and a complex number ζ with unit
modulus, the map

Rv,ζ(x) : x 7→ x+ (ζ − 1)
〈x, v〉
〈v, v〉

v

is an an isometry of Hn
C called a complex reflection, and its fixed point set

v⊥ ⊂ Hn
C is a totally geodesic subspace called a Cn−1-plane (or a complex line

when n = 2). We refer to v as a polar vector for the subspace P(v⊥) ∩Hn
C;

abusing notation slightly we will denote such a projective subspace simply
by v⊥.

2.2 Complex hyperbolic hybrid construction

The lack of totally geodesic real hypersurfaces in Hn
C presents an issue in find-

ing a suitable complex-hyperbolic analog of the Gromov–Piatetski-Shapiro
hybrid groups. Hunt’s initial idea (see [12] for the first published reference
to this construction) required subgroups of PU(n, 1) that stabilize an or-
thogonal hypersurface (on which it acts as a lattice in PU(n− 1, 1)) and fix
the orthogonal complement. This second requirement, while convenient al-
gebraically, is possibly too restrictive geometrically, and so we present below
a modified construction in which this restriction is relaxed.

Definition. Let Γ1,Γ2 < PU(n, 1) be lattices. We define a hybrid of Γ1,Γ2 to
be any groupH(Γ1,Γ2) generated by discrete subgroups Λ1,Λ2 < PU(n+1, 1)
stabilizing totally geodesic hypersurfaces Σ1,Σ2 (respectively) such that

1. Σ1 and Σ2 are orthogonal,

2. Γi = Λi|Σi
, and

3. Λ1 ∩ Λ2 is a lattice in PU(n− 1, 1).

Remark. The groups explored by Paupert [12] and Paupert–Wells [13] are
still hybrids in this new sense as well.
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3 Mostow’s lattices

In [10], Mostow constructed the first known non-arithmetic lattices in PU(2, 1)
among a family of groups generated by complex reflections. These groups,
denoted Γ(p, t), are defined as follows: Let p = 3, 4, 5, t be a real number

satisfying |t| < 3
(

1
2
− 1

p

)
, α = 1

2 sin(π/p)
, ϕ = eπit/3, and η = eπi/p. Define a

Hermitian form 〈x, y〉 = xTHy where

H =

 1 −αϕ −αϕ
−αϕ 1 −αϕ
−αϕ −αϕ 1

 .

For any pair (p, t) as above, the group Γ(p, t) is generated by the three
complex reflections of order p,

R1 =

η2 −iηϕ −iηϕ
0 1 0
0 0 1

 , R2 =

 1 0 0
−iηϕ η2 −iηϕ

0 0 1

 , R3 =

 1 0 0
0 1 0
−iηϕ −iηϕ η2

 ,

and these reflections satisfy the braid relations RiRjRi = RjRiRj. The
mirror for the reflection Ri is given by e⊥i where ei is the standard ith basis
vector. When |t| < 1

2
− 1

p
, Mostow refers to these groups as having small

phase shift. Similarly, when |t| = 1
2
− 1

p
we’ll refer to Γ(p, t) as having critical

phase shift and |t| > 1
2
− 1

p
as having large phase shift. Since the groups

Γ(p, t) and Γ(p,−t) are isomorphic, we restrict our focus to the cases where
t ≥ 0.

Remark (Tables 1 and 2 in [10]). For p = 3, 4, 5, there are only finitely-many
values of t for which Γ(p, t) is discrete, and they are given in Table 1. If
Γ(p, t) is discrete, we’ll refer to the pair (p, t) as admissible.

p t < 1/2− 1/p t = 1/2− 1/p t > 1/2− 1/p
3 0, 1/30, 1/18, 1/12, 5/42 1/6 7/30, 1/3
4 0, 1/12, 3/20 1/4 5/12
5 1/10, 1/5 11/30, 7/10

Table 1: Values of p and t for which Γ(p, t) is discrete.
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Theorem 1 (Theorem 17.3 in [10]). For each admissible pair (p, t), the
group Γ(p, t) is a lattice in PU(2, 1), and the following are non-arithmetic:
Γ(3, 5/42), Γ(3, 1/12), Γ(3, 1/30), Γ(4, 3/20), Γ(4, 1/12), Γ(5, 1/5).

Remark. In Mostow’s original list, (5, 11/30) was included as a non-arithmetic
lattice, but in fact it is arithmetic (see Parker’s survey [11, p. 27]).

Following the notation in [2], we examine closely related groups Γ̃(p, t) =
〈R1, J〉 where

J =

0 0 1
1 0 0
0 1 0

 .

J has order 3 and Ri+1 = JRiJ
−1 (where i = 1, 2, 3 and indices are taken

modulo 3). It is sufficient to study these groups Γ̃(p, t) due to the following
result:

Proposition 2 (Lemma 16.1 in [10]). For each admissible pair (p, t), the
group Γ(p, t) has index dividing 3 in Γ̃(p, t). The two groups are equal pre-
cisely when k = 1

2
− 1

p
− 1

t
and ` = 1

2
− 1

p
+ 1

t
are both integers and 3 does not

divide both k and `.

4 Hybrids in Mostow’s lattices

In this section, we’ll construct hybrids from suitably-chosen hypersurfaces in
the fundamental domains described by Deraux, Falbel, and Paupert in [2].
The reader is not expected to be familiar with the contents of this work, and
we’ll begin by reviewing all relevant information.

In [2], the authors found new fundamental domains for Mostow’s lattices in
each of the small, critical, and large phase shift cases (which have very dif-
ferent combinatorial structures). They first show that when Γ̃(p, t) has small
phase shift, a fundamental domain for this group can be constructed by
coning over two polytopes that intersect in a right-angled hexagon, which
Deraux–Falbel–Parker refer to as the “core” hexagon. Each side of this
hexagon is contained in a complex line that is polar to a positive vector
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vijk (see Figure 1), and taking lifts to C2,1 these vectors are given explicitly
below:

v123 =

−iηϕ1
iηϕ

 , v231 =

 iηϕ
−iηϕ

1

 , v312 =

 1
iηϕ
−iηϕ

 ,

v321 =

 iηϕ
1
−iηϕ

 , v132 =

−iηϕiηϕ
1

 , v213 =

 1
−iηϕ
iηϕ

 .

Geometrically, v⊥ijk is the mirror for the complex reflection J±1RjRk for k =

i±1 (mod 3). When Γ̃(p, t), has critical phase shift, the fundamental domain
changes and the core hexagon degenerates into an ideal triangle (see Figure
2) and JRjRk is parabolic (hence Γ̃(p, t) is non-cocompact). When Γ̃(p, t)
has large phase shift, the fundamental domain changes yet again – the ideal
vertices sit inside H2

C (see Figure 3) and JRjRk is elliptic. Section 6 of [2]
discusses the new combinatorial structure of the fundamental domain in both
the critical and large phase shift cases; however, here we’re only concerned
with this core polygon. It’s worth noting that Mostow was also aware of this
particular hexagon and its geometry in each of the different phase shift cases
(see Section 9 of [10]), but his original fundamental domains were constructed
in a very different fashion.

e⊥2e⊥3

e⊥1

v123

v213

v231

v321

v312

v132

Figure 1: Core polygon when 0 ≤ t < 1
2
− 1

p
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e⊥2e⊥3

e⊥1

v123v231

v312

v321 v132

v213

Figure 2: Core polygon when t = 1
2
− 1

p

e⊥2e⊥3

e⊥1

v123v231

v312

v321

v213

v132

Figure 3: Core polygon when t > 1
2
− 1

p

Recall that our hybrid construction requires two orthogonal hypersurfaces
and discrete subgroups of PU(2, 1) which stabilize them. The following
readily-checked results give candidate subspaces:

Proposition 3 (Proposition 2.13(3) in [2]). vijk ⊥ vjik and vijk ⊥ vikj.

Proposition 4. For the standard basis vectors ei, we have ei ⊥ vjik and
ei ⊥ vkij.

In the case of a critical phase shift, the vectors v132, v213, v321 are null, and
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in the case of large phase shift, they are negative vectors. In both cases, the
corresponding orthogonal projective subspaces do not intersect H2

C. For this
reason only in the case of small phase shift may we construct a hybrid from
adjacent sides of the hexagon (which we explore separately in Section 5).
However, in all phase shift cases, e1 and v312 are positive vectors, hence they
are polar to complex lines e⊥1 and v⊥312 in Hn

C (similarly, for the pairs e⊥2 , v⊥123

and e⊥3 , v⊥231 as these lie in the same J-orbit as the pair e⊥1 , v⊥312). As such,
we use these two subspaces for our hybrid construction, which are written in
homogeneous coordinates as

e⊥1 = {[z, ϕz/α− ϕ2, 1]T : z ∈ C} and

v⊥312 = {[z, iηϕ, 1]T : z ∈ C}.

Let Λijk ≤ Γ̃(p, t) be the subgroup stabilizing v⊥ijk and let Λi be the sub-

group stabilizing e⊥i . These groups are naturally identified with subgroups
of PU(1, 1), and so we let Γijk and Γi be lifts of these groups (respectively)
into SU(1, 1). In this way, we see that Λijk|v⊥ijk = Γijk and Λi|e⊥i = Γi, so we

only need to check that Γijk and Γi are indeed lattices.

Proposition 5. Γ312 is a lattice in SU(1, 1). It is cocompact for all non-
critical phase shift values.

Proof. v312 is a positive eigenvector for both R1 and R3J , hence they both
stabilize v⊥312. The action of these elements on v⊥312 can be seen below:

R1 :

 z
iηϕ
1

 7→
η2z + ϕ2 − iηϕ

iηϕ
1


R3J :

 z
iηϕ
1

 7→
iηϕ/ziηϕ

1


Let A and B be the following elements in SU(1, 1) corresponding to the
actions of R1 and R3J on v⊥312, respectively,

A =
1

η

(
η2 ϕ2 − iηϕ
0 1

)
, B =

1√
−iηϕ

(
0 iηϕ
1 0

)
.
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One then sees that

|Tr(A)| =
∣∣1 + ei2π/p

∣∣ ,
|Tr(B)| = 0,

|Tr(A−1B)| =
∣∣1 + eiπ(t−1/2+1/p)

∣∣ .
All of these values are less than or equal to 2 for all admissible pairs (p, t),
so neither A nor B is loxodromic and thus they generate the orientation-
preserving subgroup of a Fuchsian triangle group of finite covolume. It follows
that Γ312 is a lattice in PU(1, 1). By computing orders of these elements for
admissible (p, t), one obtains Table 2 showing the corresponding triangle
groups, and arithmeticity/non-arithmeticity (A/NA) of each can be checked
by comparing with the main theorem of [14].

(p, t) 4(x, y, z) A/NA (p, t) 4(x, y, z) A/NA

(3, 0) 4(2, 3, 12) A (4, 0) 4(2, 4, 8) A
(3, 1/30) 4(2, 3, 15) NA (4, 1/12) 4(2, 4, 12) A
(3, 1/18) 4(2, 3, 18) A (4, 3/20) 4(2, 4, 20) NA
(3, 1/12) 4(2, 3, 24) A (4, 1/4) 4(2, 4,∞) A
(3, 5/42) 4(2, 3, 42) NA (4, 5/12) 4(2, 4, 12) A
(3, 1/6) 4(2, 3,∞) A (5, 1/10) 4(2, 5, 10) A
(3, 7/30) 4(2, 3, 30) A (5, 1/5) 4(2, 5, 20) A
(3, 1/3) 4(2, 3, 12) A (5, 11/30) 4(2, 5, 30) A

(5, 7/10) 4(2, 5, 5) A

Table 2: Properties of Γ312

Proposition 6. Γ1 is a lattice in SU(1, 1). It is cocompact for all non-critical
phase shift values.

Proof. J−1R1R2 and JR1R3 both stabilize e⊥1 :

J−1R1R2 :

 z
ϕ

α
(z)− ϕ2

1

 7→


αη2ϕ3z + αϕ− iαηϕ4

η2ϕ2z +−iαη − iηϕ3

ϕ

α

(
αη2ϕ3z + αϕ− iαηϕ4

η2ϕ2z +−iαη − iηϕ3

)
− ϕ2

1


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JR1R3 :

 z
ϕ

α
(z)− ϕ2

1

 7→


(iηϕ3 + iαη)z − iηαϕ4 − αη2ϕ

−ϕ2z + αϕ3

ϕ

α

(
(iηϕ3 + iαη)z − iηαϕ4 − αη2ϕ

−ϕ2z + αϕ3

)
1


Let A and B be the following elements in SU(1, 1) corresponding to the
actions of J−1R1R2 and JR1R3 on e⊥1 , respectively.

A =
1

α
√
−iηϕ3

(
αη2ϕ3 αϕ− iαηϕ4

η2ϕ2 −iαη − iηϕ3

)
, B =

1

α
√
iη3ϕ3

(
iηϕ3 + iαη −iηαϕ4 − αη2ϕ
−ϕ2 αϕ3

)
.

One then sees that

|Tr(A)| =
∣∣1 + eπi(t+1/2−1/p)

∣∣ ,
|Tr(B)| =

∣∣1 + eπi(t−1/2+1/p)
∣∣ ,

|Tr(AB)| =
∣∣−1 + e6πi/p

∣∣ .
All of these values are less than or equal to 2 for admissible values of p and
t, so neither A nor B is loxodromic and thus they generate the orientation-
preserving subgroup of a Fuchsian triangle group of finite covolume. It follows
that Γ312 is a lattice in PU(1, 1). By computing orders of these elements for
admissible (p, t), one obtains Table 2 showing the corresponding triangle
groups, and arithmeticity/non-arithmeticity (A/NA) of each can be checked
by comparing with the main theorem of [14].

Lemma 7. Let K = 〈JR1R3, JR2R1, JR3R2〉. For all admissible pairs
(p, t), the group K is normal in Γ̃(p, t).

Proof. For indices i, j, k with k = i+ 1 (mod 3) and j = i− 1 (mod 3), the
following equations are readily checked:

Ri(JRiRj)R
−1
i = JRiRj, Rk(JRiRj)R

−1
k = (JRiRj)(JRjRk)(JRiRj)

−1,

Rj(JRiRj)R
−1
j = JRkRi, J(JRiRj)J

−1 = JRkRi.
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(p, t) 4(x, y, z) A/NA (p, t) 4(x, y, z) A/NA

(3, 0) 4(2, 12, 12) A (4, 0) 4(4, 8, 8) A
(3, 1/30) 4(2, 10, 15) NA (4, 1/12) 4(4, 6, 12) NA
(3, 1/18) 4(2, 9, 18) A (4, 3/20) 4(4, 5, 20) NA
(3, 1/12) 4(2, 8, 24) NA (4, 1/4) 4(4, 4,∞) A
(3, 5/42) 4(2, 7, 42) NA (4, 5/12) 4(3, 4, 12) A
(3, 1/6) 4(2, 6,∞) A (5, 1/10) 4(5, 10, 10) A
(3, 7/30) 4(2, 5, 30) A (5, 1/5) 4(4, 10, 20) NA
(3, 1/3) 4(2, 4, 12) A (5, 11/30) 4(3, 10, 30) A

(5, 7/10) 4(2, 5, 10) A

Table 3: Properties of Γ1

Lemma 8. For each admissible pair (p, t), the group K (as in the previous
lemma) has finite index in Γ̃(p, t).

Proof. Γ̃(p, t) is a quotient of the finitely-presented group〈
J, R1, R2, R3 | J3 = Rp

i = Id, RiRi+1Ri = Ri+1RiRi+1, Ri+1 = JRiJ
−1
〉

where i = 1, 2, 3 (and indices are taken modulo 3). Let XΓ be some set of
additional relations so that Γ̃(p, t) has the presentation〈
J, R1, R2, R3 | XΓ, J

3 = Rp
i = Id, RiRi+1Ri = Ri+1RiRi+1, Ri+1 = JRiJ

−1
〉
.

As K is normal, we examine the quotient Γ̃(p, t)/K with presentation〈
J, R1, R2, R3 | XΓ, J

3 = Rp
i = JRi+1Ri = Id, RiRi+1Ri = Ri+1RiRi+1, Ri+1 = JRiJ

−1
〉
.

where, again, i = 1, 2, 3 and the indices are taken modulo 3. Because Γ̃(p, t)
is generated by R1 and J , many of the relations are superfluous, so the
presentation for Γ̃(p, t)/K simplifies a bit to

〈J, R1, R2 | XΓ, J
3 = Rp

1 = JR2R1 = Id, R2 = JR1J
−1, R1R2R1 = R2R1R2〉.

The relation JR2R1 = Id also makes the braid relation R1R2R1 = R2R1R2

redundant, and so the presentation simplifies more to

Γ̃(p, t)/K =
〈
J, R1 | XΓ, R

p
1 = J3 = (J−1R1)2 = Id

〉
.



5 SMALL PHASE SHIFT HYBRIDS 13

In this way, one sees that Γ̃(p, t)/K is a quotient of the (orientation-preserving)
(2, 3, p)-triangle group. These triangle groups are finite when p = 3, 4, 5, thus
K has finite index in Γ̃(p, t).

Theorem 9. For each admissible pair (p, t), the hybrid H := H(Γ1,Γ312) =
〈Λ1,Λ312〉 has finite index in Γ̃(p, t).

Proof. From the previous lemma, it suffices to show that the hybrid H con-
tains K. Indeed, H contains the subgroup 〈J−1R1R2, JR1R3, R1, R3J〉 by
Propositions 5 and 6, from which it immediately follows that JR1R3 ∈ H.
That H contains the other two generators for K is again a straightforward
matrix computation.

JR2R1 = J(J−1R3J)R1 = (R3J)(R1), and

JR3R2 = JR3(J−1J)R2(J−1J) = (R1)(R3J).

5 Small phase shift hybrids

When Γ̃(p, t) has small phase shift, we have another natural choice of initial
hypersurfaces to use in the hybrid constrution (namely, those coming from
a pair of adjacent sides in the core hexagon in Figure 1). In this section, we
instead construct hybrids with initial subspaces v⊥312 and v⊥321 (this choice is
essentially unique as each other side is contained in the same J-orbit as one
of these two). In homogeneous coordinates, one sees that

v⊥321 = {[iηϕ, z, 1]T : z ∈ C}.

Proposition 10. Γ321 is an arithmetic cocompact lattice in SU(1, 1) for all
small phase shift values.
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(p, t) 4(x, y, z) A/NA (p, t) 4(x, y, z) A/NA
(3, 0) 4(2, 3, 12) A (4, 0) 4(2, 4, 8) A

(3, 1/30) 4(2, 3, 10) A (4, 1/12) 4(2, 4, 6) A
(3, 1/18) 4(2, 3, 9) A (4, 3/20) 4(2, 4, 5) A
(3, 1/12) 4(2, 3, 8) A (5, 1/10) 4(2, 5, 5) A
(3, 5/42) 4(2, 3, 7) A (5, 1/5) 4(2, 4, 5) A

Table 4: Properties of Γ321

Proof. R2 and JR−1
3 both stabilize v⊥321:

R2 :

iηϕz
1

 7→
 iηϕ
η2z + ϕ2 − iηϕ

1


JR−1

3 :

iηϕz
1

 7→
 iηϕ
iηϕ/z

1


Let A and B be the following elements in SU(1, 1) corresponding to the
actions of R2 and JR−1

3 on v⊥321, respectively.

A =
1

η

(
η2 ϕ2 − iηϕ
0 1

)
, B =

1√
−iηϕ

(
0 iηϕ
1 0

)
.

One can check that

|Tr(A)| = |eiπ/p + e−iπ/p|,
|Tr(B)| = 0,

|Tr(A−1B)| = |eiπ(1/2+1/p−t/3) − e2πit/3|.

All of these values are less than 2 when p ≥ 3 and |t| 6= 1
2
− 1

p
and so

the elements are elliptic. Thus 〈A,B〉 is a cocompact triangle group (and
therefore Γ321 is a cocompact lattice). By computing orders of these elements
for (p, t) values in Table 1, one obtains Table 4 showing the corresponding
triangle groups, and arithmeticity/non-arithmeticity (A/NA) of each can be
checked by comparing with the main theorem of [14].

Theorem 11. For |t| < 1
2
− 1

p
, the hybrid H(Γ312,Γ321) := 〈Λ312,Λ321〉 is the

full lattice Γ̃(p, t).
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Proof. The group K = 〈R1, R3J,R2, JR
−1
3 〉 is a subgroup of H(Γ312,Γ321).

Since J = (R3J)−1(JR−1
3 )−1, K = 〈R1, J〉 = Γ̃(p, t).

By comparing with the table on Page 418 of [7], one sees that Γ312 and
Γ321 are both arithmetic and noncommensurable in the cases where (p, t) =
(3, 1/12), (4, 1/12) and (5, 1/5). Thus

Corollary 12. Γ̃(3, 1/12), Γ̃(4, 1/12) and Γ̃(5, 1/5) are non-arithmetic lat-
tices obtained by interbreeding two noncommensurable arithmetic lattices.
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